

Code as Creative Medium

Code as Creative Medium
A Handbook for Computational Art and Design

By Golan Levin and Tega Brain

The MIT Press
Cambridge, Massachusetts
London, England

© 2021 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any
form by any electronic or mechanical means (including photocopying,
recording, or information storage and retrieval) without permission in
writing from the publisher.

Library of Congress Cataloging-in-Publication Data

Names: Levin, Golan, author. | Brain, Tega, author.
Title: Code as creative medium : a handbook for computational art and

design / by Golan Levin and Tega Brain.
Description: Cambridge : The MIT Press, [2021] | Includes

bibliographical references and index.
Identifiers: LCCN 2020022997 | ISBN 9780262542043 (paperback)
Subjects: LCSH: Computer art—Study and teaching. | Computer

art—Problems, exercises, etc. | Computer programming—Problems,
exercises, etc.

Classification: LCC N7433.83 .L48 2021 | DDC 776.07—dc23
LC record available at https://lccn.loc.gov/2020022997

10  9  8  7  6  5  4  3  2  1

This project was supported in part by the National Endowment for the
Arts, through Art Works grant #1855045-34-19 in the Media Arts
discipline. To find out more about how National Endowment for the Arts
grants impact individuals and communities, visit www.arts.gov.

This project was also made possible through support from the Frank-
Ratchye Fund for Art @ the Frontier (FRFAF), and the generosity of Edward
H. Frank and Sarah G. Ratchye, administered by the Frank-Ratchye
STUDIO for Creative Inquiry at Carnegie Mellon University; and from the
Integrated Digital Media Program at NYU Tandon School of Engineering.

Foreword

Introduction

Part One: Assignments
Iterative Pattern
Face Generator
Clock
Generative Landscape
Virtual Creature
Custom Pixel
Drawing Machine
Modular Alphabet
Data Self-Portrait
Augmented Projection
One-Button Game
Bot
Collective Memory
Experimental Chat
Browser Extension
Creative Cryptography
Voice Machine
Measuring Device
Personal Prosthetic
Parametric Object
Virtual Public Sculpture
Extrapolated Body
Synesthetic Instrument

Part Two: Exercises
Computing without a Computer
Graphic Elements
Iteration
Color
Conditional Testing
Unpredictability
Arrays
Time and Interactivity
Typography
Curves

Shapes
Geometry
Image
Visualization
Text and Language
Simulation
Machine Learning
Sound
Games

Part Three: Interviews

Teaching Programming
to Artists and Designers
The Bimodal Classroom
Encouraging a Point of View
The First Day
Favorite Assignment
When Things Go Wrong
Most Memorable Response
Advice for New Educators

Classroom Techniques

Provenance

Appendices

Authors and Contributors
Notes on Computational
Book Design
Acknowledgments

Bibliographies
Related Resources
Illustration Credits

Indexes
Name Index
Subject Index

Contents

vi

1

17
23
29
35
39
43
49
55
61
67
73
77
81
87
93
97
103
109
115
123
131
137
143

150
152
153
155
157
158
160
161
162
164

166
168
170
171
173
176
178
181
183

186

190
196
202
208
216
220
224

231

237

253
258

260

264
266

273
276

When I was first learning to code, this book would have made a world of
difference. I had been trying to learn for three years on and off—on my own
and then through an evening extension class in 1997—and there were no
resources I knew of at that time that were devoted to coding through the
visual arts. My class only provided examples and exercises in the domains
of math and text. (My final assignment was to make an accounting system
for a fictional bank.) It was a challenge and a chore, but I knew I needed
programming skills to make what I wanted to make.

Outside of class, when I finally knew enough C to start making visual
things, everything changed. My motivation kicked in and I learned more
in a few weeks than I had learned in months prior. The resulting collection
of cryptic experiments called Reactive 006 opened the door for me to join
John Maeda’s Aesthetics + Computation Group (ACG) at the MIT Media
Lab in 1999. The ACG was the place I had been looking for. As a small
research group, it brought together a wide range of artists, designers, and
coders to explore a new kind of synthesis between those domains. Some
of those early experiments evolved into the initial set of examples for
Processing 1.0, which Ben Fry and I released in 2001. My two years in ACG
clarified my future and led to my first experiences teaching code.

As I discovered firsthand, the teaching style for learning to code within
computer science rarely worked for visual arts students, so those of us who
taught visual artists and designers invented new approaches to immerse
students in this way of thinking and making. This meant breaking the
existing teaching methods apart and building them again in new ways.
Starting with the exercises in John Maeda’s Design By Numbers book, I
made guesses about what might work in my classroom and then slowly
improved the curriculum year by year by adding and removing assignments
while figuring out the balance between code and ideas. I compared notes
with others and, over time, something very different from the original
computer science curriculum emerged.

The first Eyeo Festival in 2011 was a pivotal moment in this story, when a
loose online network of artists, designers, educators, and technologists
converged in Minneapolis to meet in person for the first time. The 2013
festival supported the first “Code+Ed” summit, which brought together
a large group of committed educators. Tega and Golan both participated
in this full day of sharing and recording new ideas for a creative coding
curriculum, and it was where they began to research and collect the

Foreword

Casey Reas
June 2020

Code as Creative Mediumvi

viiForeword

teaching techniques and strategies of hundreds of educators. This book is
the first to collect this community’s wisdom in one place, to better share it
with new generations of instructors.

Great artworks get remembered, but not the humble methods of artist
training. Our collective online courses are fragile, with more and more
of that material lost month by month as URLs and servers change. This
book is important in the same way that Johannes Itten’s Design and Form
opened a window into Bauhaus pedagogy. It preserves assignments and
exercises at this moment of transition in arts education when we’re all
collectively trying to figure it out.

Like many others then and now, I first learned to code through reading
books; yet all books about coding grapple with which language to use.
Python, Java, C++, Javascript? Any choice excludes groups of educators
and learners and narrows the audience. Tega and Golan have addressed
this dilemma by making Code as Creative Medium language-agnostic—it
smartly doesn’t include code within the book. This decision has allowed
them to focus on higher-level concepts related to code and the arts,
without the requirements of explaining coding fundamentals. Subjects like
color, drawing, landscapes, and self-portraits become the primary axes and
technical topics like variables, functions, and arrays are secondary. This is
an important and exciting reversal. How refreshing to have a creative coding
book that won’t quickly become obsolete!

How can we engage “creative people” with the strange way of writing that
is code? How can we engage “code people” with a sophisticated visual
arts curriculum? Code as Creative Medium tackles these difficult questions
by curating over 30 years of exploration in visual arts education. It not
only offers guidance on new ways to involve students; instructors will find
themselves challenged and inspired as well. I’ve taught visual arts students
for two decades and I learned something new on every page of this book.
There’s enough material here to build curricula for multiple, diverse
courses. In addition, it can be used for teaching a weekend workshop, to
build a creative coding module for high school students, or to seed a new
certificate program. It is an essential resource for a rapidly evolving field.

Thank you, Tega and Golan, for such a thoughtful and generous gift to
our expanding community. I’m amazed at how far we’ve come in the last
twenty years. With this book as our guide, we can travel so much further.
Onward!

Introduction

2 Code as Creative Medium

Late one summer, we found ourselves discussing the highs and lows of
teaching computational art and design as we prepared our syllabi for the
fast-approaching term. As we swapped ideas for exercises, we discovered
that we had each chosen to assign “the clock,” a project that asks students
to develop a dynamic representation of time. We had been educated in
different countries—Golan in the USA and Tega in Australia—and yet it
became clear that we shared an extensive tradition of such assignments:
traded, like folk tales, by those teaching code in art and design schools
around the world. These pedagogic traditions, however, were mostly
absent from the programming primers on our bookshelves, which dealt
above all with how to write code, rather than what to make when learning
to code and why. This book is our attempt to address this gap and capture
an evolving vernacular. It is a book for artists, designers, and poets who are
already working with code as a creative medium, or who are curious about
doing so. It is for computer scientists, software developers, and engineers
who are looking for more open-ended, expressive, or poignant ways to
apply their skills. And it is a playbook for educators in all of these fields—a
companion to help plan a semester’s journey, and a guide to bring students
into a creative, thoughtful, and ultimately transformative engagement
with computation. Our project draws on research, educational materials,
and candid firsthand accounts from a vibrant community of practitioners
and educators, all of whom are navigating the challenges of blending
engineering and poetry in their courses and creative work.

It’s difficult to overstate the importance of computational literacy in 21st-
century life. Computer programming, once an esoteric skill in engineering
and business, has now acquired broad applicability in fine arts, design,
architecture, music, humanities, journalism, activism, poetry, and many
other creative fields. But in the classroom, the adaptation of programming
education to students with different objectives and learning styles has
not kept apace. Instead, for more than half a century, computer science
departments have defined the design, delivery, and cultural norms of
programming curricula—and the resulting mismatch between traditional
computer science education and art and design students has become a
persistent challenge. As designer-engineer Leah Buechley has observed,
traditional computer science courses often fail to connect with students
who learn best from concrete experiences, not abstract principles; who
prefer to work improvisationally, instead of following formulas; and
who aim to create things that are expressive, rather than utilitarian.1
We are witnessing the shear between the history of computer science

3Introduction

as a discipline, concerned with the nature and optimality of algorithms,
and the new reality of computer programming as a skill, a form of basic
literacy with practical utility (and idioms) in every field. There is also a
growing understanding that programming education needs to reach more
diverse and previously underserved populations, and an appreciation
that new and more culturally potent teaching methods are required to
achieve this.2 Fortunately, such alternative pedagogies—in the form of
arts-oriented programming toolkits, classroom approaches, assignments,
and community support structures—have arisen within the growing set of
cultural practices known as “creative coding.”

“Creative coders” are artists, designers, architects, musicians, and poets
who use computer programming and custom software as their chosen
media. These practitioners blur the distinction between art and design
and science and engineering, and in their slippery interdisciplinarity, may
best be described with the German word Gestaltern, or “creators of form.”
Their tools of choice are programming environments like Processing, p5.js,
Tracery, Max/MSP/Jitter, Arduino, Cinder, openFrameworks, and Unity, all
of which have been developed to honor the particular needs and working
styles of both professionals and students with visual-spatial, musical-
rhythmic, verbal-linguistic, and bodily-kinesthetic intelligences.4 Because
many of these creative coding toolkits are free and open-source, they have
radically democratized software development, positioning programming
as a potent mode of cultural inquiry. The exercises and assignments in
this book assume that the learner is using one or another of these creative
coding tools, or something like them.

Who Is This Book For?
This book is a manual and sourcebook for teaching and learning the use
of code as a creative medium, and for exploring programming in a more
vibrant cultural context. It contends with software as an artistic material,
offering pathways to learn its grain and texture, strengths and limitations.
We hope this book will find use among university educators (in fields like
media arts, design, informatics, media studies, and human-computer
interaction); those who teach computer programming in high schools, or
as a general undergraduate education requirement, such as “CS for non-
majors” courses; and workshop leaders (at makerspaces, hackerspaces,
code schools, educational retreats, and adult education programs). We also
believe this book may be directly useful to artists, designers, and creative
autodidacts who seek prompts for self-directed software projects.

Processing seeks to ruin the careers of
talented designers by tempting them away
from their usual tools and into the world of
programming and computation. Similarly,
the project is designed to turn engineers
and computer scientists to less gainful
employment as artists and designers.
—Ben Fry and Casey Reas3

To me, the title artist said nothing about
one’s medium, message or format. It spoke
instead to a certain type of wideness, a
flexible approach to considering the world.
—Mimi Onuoha5

4 Code as Creative Medium

Why make a book for teachers? There are many books that serve to
introduce students to the basics of computational art and design, but few
have been written with the educator in mind. This is surprising given that
so many of us teach. We teach to nurture and mentor the next generation,
we teach to support our art and design practices, and we teach for the
love of being in dialogue with those who are different than ourselves. We
often do this in an increasingly corporatized university system that relies
heavily on income from teaching, but provides almost no training to faculty
on how to do it well. With little else to go on, approaching the lectern after
the completion of graduate studies often involves reverse engineering
the pedagogy of our own favorite teachers: how did they manage class
time? How did they structure their assignments? To such a reader, this
book offers a collection of helpful patterns. They are taken from our own
experiences as educators, collected directly from more than a dozen of our
colleagues, and distilled from the online syllabi and other resources posted
by hundreds of our peers.

What’s Worth Making, and Why?
Creative coding courses are now a standard offering in many art and
design programs, reflecting not only the incursion of computing into
everyday life, but also the ongoing work of software arts tooling, teaching
practices, and community-building. We are indebted to decades of work
on toolkits that accommodate diverse learning styles, have clear syntax,
and are supported by generous and inclusive documentation. The creative
coding community’s focus on how to code has dramatically expanded to
whom it has become accessible. But it has also led us to equally important
questions about what to make and why to make it.

In computational art and design, many responses to the questions of what
and why continue historic lines of creative inquiry centered on procedure,
connection, abstraction, authorship, the nature of time, and the role of
chance. The pursuit of these formal and conceptual concerns in the
medium of computation has created new practices and aesthetics, and
has also heightened a sensibility to the forces and flows of computation
itself. Creators have become attuned to the ways in which working
computationally encourages certain perspectives and occludes others.
Media artists, computational designers, and other creative coders are the
bards of a generative and interactive poetics, and, in the words of Julie
Perini, “can provide dis-alienating experiences for a society desperately in
need of healing.”7

The main challenge is trying to create work
that touches people at an emotional level,
as opposed to them thinking about the
technology or wondering about how it was
made. Making poems, not demos, is how
we refer to it, i.e. making work that is like a
poem, short yet dense, re-tellable, rhythmic,
meaningful as opposed to a demo that feels
like technology for technology’s sake.
—Zach Lieberman6

5Introduction

Increasingly, computational artists and designers have also developed more
overtly political practices that both anticipate and respond to technological
transformations in society—allowing for “experimentation with new ways
of seeing, being, and relating, as well as opportunities to develop innovative
strategies and tools for resistance movements.”10 Such practices adopt
and recombine methods from speculative and critical design, relational
aesthetics, and critical engineering to provoke reconsideration of the
origins and consequences of new technologies and their uneven impact
on different individuals and communities. The assignments and exercises
in this book are designed to provide entry points into the technical skills,
aesthetic issues, and social considerations involved in these and many
other modes of practice.

Marshall McLuhan observed that art is a “Distant Early Warning system
that can always be relied on to tell the old culture what is beginning to
happen to it.”12 Artistic engagements with computation and emerging
technologies, perhaps even more so than science fiction, offer a tangible
glimpse of what may eventually become the everyday.13 Whom does
this clairvoyance serve? For five decades, the most prominent computer
science research centers (including Bell Labs, Xerox Parc, MIT Media
Lab, and Google ATAP) have included technologically literate artists in
the project of “inventing the future,” instrumentalizing artistic inquiry in
the service of capital. As Stewart Brand explained, following his residency
at MIT: “The deal was very clear. The Lab was not there for the artists.
The artists were there for the Lab. Their job was to supplement the
scientists and engineers in three important ways: they were to be cognitive
pioneers; they were to ensure that all demos were done with art—that is,
presentational craft; and they were to keep things culturally innovative.”14

With the fracturing of civic life after social media, the malignant growth
of digital authoritarianism, and the looming threat of environmental
catastrophe, the sheen has come off Silicon Valley and the folly of
technological solutionism has become clear. To the extent that we
continue to prototype new futures within the framework of late capitalism,
and echoing McLuhan’s notion of the arts as a “warning system,” there
is a new urgency for artists and designers to have a seat at the tables
where technological agendas are set. As Michael Naimark has argued,
“Artists bring criticality to environments that are otherwise vulnerable
to the Achilles’ heel of nerd culture: techno-optimism and technophilic
enthusiasm.”16 The technologically literate artist or designer has an

Art is the only ethical use of AI.
—Allison Parrish8

My apps are as useful as a song.
—Scott Snibbe9

We need a multifaceted and transdisciplinary
approach blending art, science, theory,
and hands-on experimentation. The media
will talk about how it all works, but to fully
understand, to appropriately educate others,
to devise suitable policies, and to form
strategies of resistance, we need to know
how it breaks.
—Heather Dewey-Hagborg11

Digital art and design rework technology
into culture, and reread technology as
culture. What’s more, they do so in a
concrete, applied way, manipulating the
technology itself, with a latitude that admits
misapplication and adaptation, rewiring
and hacking, pseudofunctionality and
accident. Creative practice also fractures
that technocultural material into millions
of heterogeneous interests and agendas,
specific investigations, aesthetics,
approaches, and projects.
—Mitchell Whitelaw15

6 Code as Creative Medium

essential role to play in checking society’s worst impulses. Not only can
they ring the alarms when freedom and imagination are threatened;
they can also use their privilege to create systems that, as Elvia Wilk
writes, “champion subjective experience,” “expand the range of human
expression,” and make space in our conversations and institutions for as
many perspectives as possible.17

This book is an argument for creators with hybrid skills and open hearts.
We insist upon the value of arts literacies within engineering spaces,
and engineering literacies in the arts—and we believe that doing so
is critically important at a time when education systems increasingly
prioritize corporate agendas over the cultivation of capacities like critique,
imagination, empathy, and justice.20 An arts literacy provides a vocabulary
for recognizing the politics of technologies, and for negotiating and
renegotiating the values and priorities they reinforce.21 The world is not
a computer, it is not a system to be optimized, and it will always refuse
to be neatly resolved into stable categories or fixed value systems.22
Education in the arts cultivates capacities for navigating this messiness,
as well as celebrating qualitative ways of knowing. As software continues
to permeate our lives, we need to foster culturally enmeshed ways to
contextualize it, question it, modify it, and develop shared understandings
for working with it. Just as “everyone should learn to code,” everyone
should also be equipped with the intellectual tools of the arts. Education
in culturally oriented computational practices, such as those gathered
together in this book, offers a rich way to do both.

A Field Guide for Teaching
This playbook presents resources and practices for building what we
believe are good assignments, good lectures, and good classrooms in our
field. As a distillation of our shared values, it lays out teaching tools for
project-based learning, materials for composing lectures that highlight a
range of approaches from a diverse group of makers, and strategies for the
creation of exciting classrooms.

Project-based learning is a key pedagogical approach in the arts. Unlike
most programming textbooks, the assignments shared here are open-
ended prompts, encouraging curiosity-driven and improvisational
approaches to the use of code. We believe a good assignment should
present a set of constraints that are tight enough to learn necessary skills,
but at the same time, inspire a wide range of possible responses, allowing

Amidst all the attention given to the sciences
as to how they can lead to the cure of all
diseases and daily problems of mankind, I
believe that the biggest breakthrough will
be the realization that the arts, which are
conventionally considered “useless,” will be
recognized as the whole reason why we ever
try to live longer or live more prosperously.
The arts are the science of enjoying life.
—John Maeda18

We can participate in fantasies that
see technology bringing the world into
predictable control, but I prefer to work
through an alternative vision that sees
technology embracing the messiness
and uncertainty of the world to cultivate
experiences of wonder, curiosity,
enchantment, and surprise that come from
seeing oneself as small part of a great
number of wonders that surround us in
everyday life.
—Laura Devendorf19

Humanists must be educated with a deep
appreciation of modern science. Scientists
and engineers must be steeped in humanistic
learning. And all learning must be linked with
a broad concern for the complex effects of
technology on our evolving culture.
—Jerome B. Wiesner23

7Introduction

for productive comparisons in critique. A good assignment should also
offer a way to examine a timely social question—as Paolo Pedercini writes,
it should constitute “an entry point to a critical issue.”25 And for the
computational artist or designer in particular, it should preserve room for
the critical, imaginative, or expressive reconsideration of technology and
its possibilities. We believe a good creative coding assignment should
be an invitation to look at technology with fresh eyes: defamiliarized,
recontextualized, and reinterpreted. We are hardly the first educators to
advocate for this sort of “socially situated learning-by-making”; rather,
we continue the work of pioneers like Idit Harel and Seymour Papert, and
others like Sherry Turkle and Mitchel Resnick, whose visions for “situated
constructionism” in technology education, though decades old, have yet
to be fully realized.26

The assignments in this book have been chosen with these criteria
in mind, offering opportunities for personalizing, weirding, debating,
and queering computation. Each is elaborated in a syllabus module
that includes variations for differing skill levels or learning objectives.
Each places equal importance on the cultural valence of computer
technologies, codecraft, the subjectivity of the practitioner, and
awareness of historic lines of inquiry. These prompts make space for
diverse and personalized work, and aim to preserve the student’s dignity,
curiosity, whimsy, and criticality in an educational landscape where
students are all too often asked to create (or worse, re-create) bank
software. Importantly, the assignments in this book are also language-
agnostic, allowing students to develop responses using whichever
programming toolkit is preferred.

To demonstrate some of the ways in which these assignments can be
approached, we have illustrated these modules with art and design
projects selected on the basis of their pedagogic value: that is, not only
for their excellence as projects, but also for how easily they can be
explained in a classroom setting. The exemplars in our illustrations are
thus not intended to articulate a canon of computational artworks and
design projects, but rather to support a canon of assignments. Where we
have omitted classic and influential works of media art or design—and
there are so many—it is for this reason. Likewise, the high value we place
on explicability also underpins our occasional inclusion of little-known
projects by students.

Why focus on projects? We take seriously
the analogy between coding and writing.
When you learn to write, it’s not enough to
learn spelling, grammar, and punctuation.
It’s important to learn to tell stories and
communicate your ideas. The same is true
for coding.
—Mitchel Resnick24

To me an assignment is useful if it does any
of the following: (1) constitutes an entry point
to a critical issue; (2) builds transferable
skills (blinking an LED on an Arduino is dull
but introduces some important concepts);
(3) allows students to make something
personally relevant: a chance to develop
their own creative practice, or make a
portfolio piece, regardless of their elected
sub-discipline.
—Paolo Pedercini27

The task, then, is to challenge not only
forms of discriminatory design in our inner
and outer lives, but to work with others to
imagine and create alternatives to the
techno quo—business as usual when it
comes to technoscience—as part of a larger
struggle to materialize collective freedoms
and flourishing.
—Ruha Benjamin28

8 Code as Creative Medium

We acknowledge that the landscape of software-based creative practices
is vastly greater than the scope of this book. So too are the ways in which
these themes can be approached. In selecting examples to illustrate
each assignment, we have attempted to represent a diverse range of
practitioners. But there is much more work to be done. As Heather Dewey-
Hagborg has noted, “The intersection of arts and technology brings the
worst of both worlds together. The tech industry is so white male, and
the art world also prioritizes white men. But then, when you put those
two together, it’s like it just explodes.”29 This has significant implications
for who identifies as being able to work creatively with software, and we
emphatically affirm the ongoing need to diversify who is represented in
lectures and syllabi as an essential part of dismantling the systemic racism
and sexism in our institutions and cultures.30

Giving space to a multitude of voices and perspectives is not only critical
for counteracting the obliviousness of those in positions of power to
understanding the potential risks or harms of what they design,31 but
also for what Kamal Sinclair calls “democratizing the imagination for the
future.”32 Both are urgent challenges in hybrid fields where computation
and the imagination come together. However, attempts to address these
biases in isolation still leave other shortcomings in place. We acknowledge,
for example—as we write within elite universities on the East Coast of
North America—that this book emerges from our particular context, and
that it reifies the myopia of the communities in which we participate. We
also recognize, with humility, that vocabularies and values inherited from
the arts can guide the way: art gives us tools to reveal partial perspectives,
acknowledge subjectivity, transform how we see, and address unjust power
relations. Taking inclusion as a starting point, creative coding pedagogies
can offer a powerful way to address these histories and futures, broadening
how programming skills are taught, why they matter, who is positioned to
use them, and how.

In addition to providing resources for assignments and lectures, this
book also provides strategies for sustaining classrooms that minimize
frustration and maximize the freedom to make mistakes. We recognize
that developing fluency in a new medium can demand silencing one’s
inner critic, at least for a while. Computing technologies, in particular, are
often discouragingly brittle and impersonal, making the hurdles of creative
work even steeper. In an educational environment, methodologies from
traditional computer science classrooms (such as emphasizing solitary

Every single student comes with something.
[People] are not empty vessels. They come
to the table with something valuable from
a community and a culture. The more you
can help them make that bridge between
what they have and what they want to do, the
more engaged they will be, and the longer
they can stick with it. We have to make that
connection.
—Nettrice Gaskins33

9Introduction

work policed by plagiarism detectors) can exacerbate individual frustration
and erode group morale.34 The creative coding educator, in addition to
explaining interdisciplinary techniques and showing inspiring projects,
must also be sensitive to the mood of their classroom and students.
As author and educator bell hooks observes, the necessity of actively
orchestrating the emotional dimensions of a classroom is often overlooked.
For hooks, excitement, “generated by collective effort,” reinforces a
group’s mutual investment in each other’s work and is a key ingredient in
establishing an environment that is conducive to learning, empowerment,
and transformation.35 The Classroom Techniques and the Interviews
sections of this book compile the wisdom of numerous educators regarding
how they build classroom communities and help individuals cope with
frustration. These sections share techniques for guiding arts practitioners
who do not necessarily identify as programmers through their initial fear
and inevitable frustrations.

How This Book Is Organized
This book contains three primary sections: Assignments, Exercises,
and Interviews.

Part One, Assignments, is a collection of syllabus modules. Each module
is built around an open-ended assignment or project prompt. These are
recurring and even “classic” project briefs, collected from dozens of our
peers and mentors, that we have received, tested, adapted, or observed
over the course of more than two decades in higher education. Although
loosely ordered by difficulty, the modules may also be grouped by their
emphasis on key concerns in computational arts and design, including:

generativity
Iterative Pattern, Face Generator, Generative Landscape,
Parametric Alphabet, Parametric Object

interactivity
Virtual Creature, Drawing Machine, One-Button Game,
Conversation Machine

transcoding and transmediality
Clock, Custom Pixel, Data Self-Portrait, Measuring Device,
Synesthetic Instrument

10 Code as Creative Medium

connectivity
Bot, Collective Memory, Experimental Chat, Browser Extension,
Creative Cryptography

corporeality and virtuality
Augmented Projection, Personal Prosthetic, Virtual Public
Sculpture, Extrapolated Body

Each module includes a Brief that summarizes the artistic prompt; Learning
Objectives, which define the goals of the module in terms of demonstrable
skills or knowledge acquisition; Variations, a set of easements and
further opportunities for experimentation; and a short essay, Making it
Meaningful, that serves as a guide to understanding the assignment’s
significance, challenges, and potential avenues of approach. An illustrated
collection of annotated examples of historic and contemporary projects—
our touchstones—demonstrate how different artists and students have
previously approached the assignment’s premise. An appendix on the
provenance of these assignments provides more information about their
history and (where possible) their original authors.

Part Two, Exercises, consists of short programming prompts that hone the
mastery of specific technical skills, while remaining idiomatically relevant
to artists and designers. These exercises develop the student’s skills in
the use of computational techniques to control elementary visual (or in
some cases, auditory or textual) patterns and forms, and may be assigned
as homework or as in-class activities. Although the exercises grant some
latitude as to the specific details of their implementation—they have
no single correct solution—they are nevertheless written to make both
perceptual and technical evaluations possible. One exercise on the theme
of iteration, for example, requires the student to write code that generates
the alternating squares of a checkerboard. The exercises are organized into
topical sections, including conditional testing, iteration, typography, and
visualization, and they range in level of difficulty.

In creating a compendium of assignments and exercises, we have taken
inspiration in and comfort from several key precursors: Draw It with Your
Eyes Closed: The Art of the Art Assignment, by Dushko Petrovich and
Roger White (2012); Taking a Line for a Walk: Assignments in Design

11Introduction

Education, by Nina Paim, Emilia Bergmark, and Corinne Gisel (2016); The
Photographer’s Playbook: 307 Assignments and Ideas, by Jason Fulford
and Gregory Halpern (2014), and Wicked Arts Assignments: Practising
Creativity in Contemporary Arts Education, by Emiel Heijnen and Melissa
Bremmer (2020). Each is a kind of pedagogic potluck for their respective
creative spheres and showed us how a book could bring together
projects, exercises, and approaches from a field of practice. These books
also demonstrate that there is no one-size-fits-all way of designing
a curriculum or running a classroom—as confirmed by the educators
whose varied and even contradictory advice is shared in our next section.

Part Three, Interviews, presents thematically organized conversations
with thirteen diverse and renowned educators. In this section, instructors
like Dan Shiffman, Lauren McCarthy, and Taeyoon Choi speak to the
practical, philosophical, and spiritual challenges of teaching expressive
and critical studio arts through the often unwelcoming toolsets of
software development. Underpinning many of our questions is a
concern for how education might repair the persistent split between
the sciences and humanities:36 How can we encourage “heart” in the
midst of technical education? What pedagogic strategies are necessary
to teach technical material to artists? How do you corral students with
diverse skillsets? These questions are unique to the hybrid nature
of computational art and design, and they reveal themselves in a
particularly stark way when the educator must rapidly oscillate between
teaching art and math. In their responses, our interview subjects offer
nuts-and-bolts advice for software arts instruction, as well as broader
strategies for interdisciplinary education.

Take This Book and Run with It
At first glance, it may seem curious that in a book about coding
pedagogy, there is no code to be found. For those interested, we have
provided an open code repository online that contains solutions to our
exercises in several popular programming languages, as well as helpful
“starter” code, where possible, for the larger, open-ended assignments.
There are two reasons why we have not provided code in the pages
of this book itself. The first speaks to the trade-off that occurs when
students are provided with starter code: on one hand, it gives them
a head start, but in our experience, it also dramatically narrows the
students’ imaginations and the scope of the resulting projects. The
second reason, more importantly to us, concerns the longevity of this

12 Code as Creative Medium

book. In not tying the assignments to specific programming languages
and development environments, we hope to preserve their relevance as
generations of platforms inevitably come and go. We will be updating
our online code repository as technologies change, and we warmly invite
contributions from those who wish to port or extend our examples to topics
and toolkits outside our own expertise.

Whether you are teaching or learning creative coding in your kitchen, in a
school or at a university, in an arts program or in a STEM field, with others
or by yourself—we believe there will be something here to enrich your
experience. We can’t wait to see what you or your students make.

13Introduction

Notes
1. Leah Buechley, “Expressive Electronics:
Sketching, Sewing, and Sharing” (lecture,
wats:ON? Festival, Carnegie Mellon
University, Pittsburgh, PA, April 2012),
https://vimeo.com/62890915.

2. See, for example, Mark Guzdial,
“Computing Education Lessons Learned
from the 2010s: What I Got Wrong,”
Computing Education Research Blog, January
13, 2020, https://computinged.wordpress.
com/2020/01/13/computing-education-
lessons-learned-from-the-2010s-what-i-got-
wrong/.

3. Ben Fry and Casey Reas, “Processing 2.0
(or: The Modern Prometheus)” (lecture, Eyeo
Festival, Minneapolis, MN, June 2011), 0:45,
https://vimeo.com/28117873.

4. Howard Gardner, Frames of Mind: The
Theory of Multiple Intelligences (New York:
Basic Books, 2011).

5. Mimi Onuoha, “On Art and Technology:
The Power of Creating Our Own Worlds,”
Knight Foundation, last modified March 2,
2018, https://knightfoundation.org/articles/
authors/mimi-onuoha/.

6. “YesYesNo,” IdN Magazine 19, no. 5
October 2012): 30–31.

7. Julie Perini, “Art as Intervention: A Guide
to Today’s Radical Art Practices,” in Uses
of a Whirlwind: Movement, Movements,
and Contemporary Radical Currents in the
United States, ed. Team Colors Collective
(Chico, CA: AK Press, 2010), 183, http://
sites.psu.edu/comm292/wp-content/
uploads/sites/5180/2014/10/Perini-Art_as_
Intervention.pdf.

8. Claire Evans (@YACHT), “Thanks so much
for having us! Full credit due to the brilliant
@aparrish for saying ‘art is the only ethical
use of AI’ during a panel we hosted in NYC
a few months back. It’s become our mantra
<3,” Twitter, December 2, 2019, 5:01 PM.

9. Scott Snibbe, personal communication to
Golan Levin. See Golan Levin (@golan), “
@snibbe used to say, it’s “as useful as a
song”. Case closed.” Twitter, September 4,
2018, 9:11 PM.

10. Perini, 183.

11. Heather Dewey-Hagborg, “Sci-Fi Crime
Drama with a Strong Black Lead,” The New
Inquiry, July 6, 2015, https://thenewinquiry.
com/sci-fi-crime-drama-with-a-strong-
black-lead/.

12. Marshall McLuhan, Understanding Media:
The Extensions of Man (New York: McGraw
Hill, 1964), 22.

13. Golan Levin, “New Media Artworks:
Prequels to Everyday Life,” Flong (blog),
July 19, 2009, http://www.flong.com/
blog/2009/new-media-artworks-prequels-
to-everyday-life/.

14. Stewart Brand, “Creating Creating,”
WIRED, January 1, 1993, https://www.wired.
com/1993/01/creating/.

15. Adapted (with permission) from Mitchell
Whitelaw, Metacreation: Art and Artificial
Life (Cambridge, MA: The MIT Press,
2004), 5. See Mitchell Whitelaw (@mtchl),
“Written by my younger and more idealistic
self - if I could revise it now I’d expand /
disperse ‘art’ to encompass a wider range
of practices (including design). But thanks
Sara [Hendren]!,” Twitter, April 29, 2020,
11:48 PM.

16. Michael Naimark, personal
communication to Golan Levin, 2014.

17. Elvia Wilk, “What Can WE Do? The
International Artist in the Age of Resurgent
Nationalism,” The Towner, September
11, 2016, http://www.thetowner.com/
international-artists-nationalism/.

18. John Maeda, in “VOICES; John Maeda,”
The New York Times, November 11, 2003,
https://www.nytimes.com/2003/11/11/
science/voices-john-maeda.html.

19. Laura Kay Devendorf, “Strange and
Unstable Fabrication” (PhD diss., University
of California, Berkeley, 2016), 81, https://
digitalassets.lib.berkeley.edu/etd/ucb/text/
Devendorf_berkeley_0028E_16717.pdf.

20. Orit Halpern, “A History of the MIT
Media Lab Shows Why the Recent Epstein
Scandal Is No Surprise,” Art and America,
November 21, 2019, https://www.artnews.
com/art-in-america/features/mit-media-
lab-jeffrey-epstein-joi-ito-nicholas-
negroponte-1202668520/.

21. Danielle Allen, “The Future of Democracy,”
HUMANITIES 37, no. 2 (Spring 2016),
https://www.neh.gov/humanities/2016/
spring/feature/the-future-the-humanities-
democracy.

22. Tega Brain, “The Environment Is Not a
System,” A Peer-Reviewed Journal About 7, no.
1 (2018): 152–165.

23. In Momentum, MIT Media Laboratory,
2003, http://momentum.media.mit.edu/
dedication.html.

24. From Mitchel Resnick, “Computational
Fluency,” Medium, September 16, 2018,
https://medium.com/@mres/computational-
fluency-776143c8d725. (Adapted from his
book Lifelong Kindergarten.) See also Yasmin
Kafai and Mitchel Resnick, Constructionism in
Practice: Designing, Thinking, and Learning in
A Digital World (New York: Routledge, 1996).

25. Paolo Pedercini, personal communication
to Golan Levin, June 16, 2020.

26. Idit Harel and Seymour Papert, “Situating
Constructionism,” in Constructionism
(Norwood, NJ: Ablex Publishing, 1991), http://
web.media.mit.edu/~calla/web_comunidad/
Reading-En/situating_constructionism.pdf.

27. Pedercini, June 16, 2020.

28. Ruha Benjamin, ed., Captivating
Technology: Race, Carceral Technoscience,
and Liberatory Imagination in Everyday
Life (Durham, NC: Duke University Press,
2019), 12.

29. Heather Dewey-Hagborg, “Hacking
Biopolitics” (lecture, The Influencers
2016: Unconventional Art, Guerrilla
Communication, Radical Entertainment,
CCCB, Barcelona, October 2016), 48:20,
https://vimeo.com/192627655.

30. See the Refresh campaign and project
that has addressed gender bias in the Prix Ars
Electronica awards: https://refreshart.tech/.

31. Catherine D’Ignazio and Lauren F. Klein
call this the “privilege hazard” in their book
Data Feminism (Cambridge, MA: MIT Press,
2020), 57.

32. Kamal Sinclair, “Democratize Design,”
Making a New Reality, May 18, 2018, https://
makinganewreality.org/democratize-design-
86d2385865bd.

33. “The Technologists in the Studio:
Nettrice Gaskins Highlights the Connections
between Communities, Cultures, Arts, and
STEM,” Wogrammer, April 24, 2019, https://
wogrammer.org/stories/nettrice.

34. James W. Malazita and Korryn Resetar,
“Infrastructures of Abstraction: How
Computer Science Education Produces Anti-
Political Subjects,” Digital Creativity 30, no. 4
(December 2019): 300–312, https://doi.org/
10.1080/14626268.2019.1682616. Malazita
and Resetar discuss how the ubiquitous
use of plagiarism tools in computer science
infrastructurally discourages collaboration,
discussion, and knowledge sharing. This
can be observed firsthand in David Kosbie’s
Automated Plagiarism Detection Tool
tutorial, developed for CMU introductory
programming course 15-110, https://www.
youtube.com/watch?v=LdU0dTPaueU.

35. bell hooks, Teaching to Transgress (New
York: Routledge, 2014), 7–8.

36. As identified by C. P. Snow in The
Two Cultures (Rede Lecture, University of
Cambridge, 1959).

Part One: Assignments

17Assignments

Ite
ra

tiv
e

Pa
tt

er
n

18 Code as Creative Medium

Iterative Pattern
Generating a texture or textile design

Brief
Write code to generate a tiling pattern or textural
composition, as for wallpaper or fabric. Give
consideration to aesthetic issues like symmetry,
rhythm, color; detail at multiple scales; precise
control of shape; and the balance between
organic and geometric forms.

Your pattern should be designed so that it could
be infinitely tiled or extended. Design something
you would like to put on the walls or floor of
your home, or that you could imagine yourself
wearing. Export your pattern in a high-resolution
format, and print it as large as possible for your
peers’ review. Remember to sketch first.

Learning Objectives
• Create visual designs using the Cartesian

coordinate system and combining drawing
functions

• Use functional abstraction to encapsulate the
code for modular design elements

• Generate and critique designs with symmetries
and/or seamless repetition

Variations
• Experiment with 2D graphics transformations,

such as rotation, scaling, and mirror reflections.
• Use nested iteration to develop 2D rhythms or

other gridlike visual structures.
• Create a helper function to abstract the way

in which a complex visual element (such as a
flower, animal, fruit, or fleur-de-lis) is rendered
throughout your design.

• Reproduce a preexisting textile or wallpaper
design using code only.

• Make a kaleidoscope by incorporating a
photographic image or video feed into a pattern
with symmetric reflections.

• Have your pattern printed on real fabric or
wrapping paper. Consider other output devices
or on-demand services for realizing your pattern,
such as computer-controlled laser cutters,
knitting machines, or lace-making machines.

• Make an animated “dynamic wallpaper” loop to
use in the background of your videoconferences.
Your design should scale gracefully by rendering
correctly at different canvas resolutions.i

Making It Meaningful
Pattern is the starting point from which
we perceive and impose order in the world.
Examples of functional, decorative, and
expressive pattern-making date from ancient
times and take the form of mosaics, calendars,
tapestry, quilting, jewelry, calligraphy,
furniture, and architecture. There is an intimate
connection between pattern design, visual
rhythm, geometry, mathematics, and iterative
algorithms. This prompt invites the creator to
hone their understanding of these relationships
in formal terms. An important variation of this
prompt is to realize designs physically, through
either digital printing, fabrication in an unusual
material, or at an unexpected scale. This can be
a watershed moment of synthesis for software
artists who crave making something physical.

19Assignments

20 Code as Creative Medium

21Assignments

1 2 3

4

5

6 7

Captions
1. In Spamgetto (2009), the Italian design
agency Todo presents computationally
generated wallpaper whose elements include
text from thousands of spam emails.

2. Georg Pólya’s illustrations (1924) of the
seventeen periodic plane symmetry groups
had a profound influence on the algorithmic
patternmaking of M. C. Escher.

3. Zellige terracotta tiles in Marrakech (17th
century) form edge-to-edge, regular, and
other tessellations.

4. Casey Reas’s One Non-Narcotic Pill A Day
(2013) presents a dynamic collage pattern
generated from a video recording.

5. Alison Gondek, a scenic design student
at Carnegie Mellon studying introductory
programming, used p5.js to create this
pattern inspired by the “Circular Gallifreyan”
language from Doctor Who.

6. Vera Molnár was among the first artists
to use a computer. Her 1974 untitled plotter
drawing demonstrates patterns arising from
the interaction between procedural iteration
and randomized omission.

7. Leah Buechley explores the intersection
of computation and craft. The design of
her lasercut curtain (2017), generated in
Processing, features multiple forms of
iteration and controlled randomness.

Additional Projects
Dave Bollinger, Density Series, 2007,
generative image series.

Liu Chang, Nature and Algorithm, 2016,
algorithmic images, satellite imagery,
ink on paper.

Joshua Davis, Chocolate, Honey and Mint,
2013, generative image series.

Saskia Freeke, Daily Art, 2010–2020,
generative image series.

Manolo Gamboa Naon, Mantel Blue, 2018,
ink on paper.

Tyler Hobbs, Isohedral III, 2017, inkjet print on
paper, 19 x 31”.

Lia, 4jonathan, 2001, generative image series.

Holger Lippmann, The Abracadabra Series,
2018, generative image series.

Jonathan McCabe, Multi-Scale Belousov-
Zhabotinsky Reaction Number Seven, 2018,
generative image series.

Vera Molnár, Structure de Quadrilateres
(Square Structures), 1987, ink on paper.

Nontsikelelo Mutiti, Thread, 2012–2014,
screen print on linoleum tiles.

Nervous System, Patchwork Amoeba Puzzle,
2012, lasercut plywood.

Helena Sarin, GANcommedia Erudita, 2020,
inkjet printed book.

Mary Ellen Solt, Lilac, 1963, concrete poetry.

Jennifer Steinkamp, Daisy Bell, 2008,
video projection.

Victor Vasarely, Alom (Rêve), 1966, collage on
plywood, 99 1/5 x 99 1/5”.

Marius Watz, Wall Exploder B, 2011, wall
drawing, 9 x 3.6 m.

Readings
David Bailey, David Bailey’s World of Escher-
Like Tessellations, 2009, tess-elation.co.uk.

P. R. Cromwell, “The Search for Quasi-
Periodicity in Islamic 5-fold Ornament,” The
Mathematical Intelligencer 31 (2009): 36–56.

Anne Dixon, The Handweaver’s Pattern
Directory: Over 600 Weaves for 4-shaft Looms
(Loveland, CO: Interweave Press, 2007).

Ron Eglash, African Fractals: Modern
Computing and Indigenous Design
(New Brunswick, NJ: Rutgers University
Press, 1999).

Samuel Goff, “Fabric Cybernetics,” Tribune
(blog), August 23, 2020.

Branko Grünbaum and G. C. Shephard,
Tilings and Patterns (New York: W. H.
Freeman & Company, 1987).

“Wallpaper Collection,” Collections, Historic
New England, historicnewengland.org.

Owen Jones, The Grammar of Ornament
(London: Bernard Quaritch Ltd., 1868).

Albert-Charles-Auguste Racinet, L’Ornement
Polychrome (Paris: Firmin Didot et Cie, 1873).

Casey Reas et al., {Software} Structures,
2004–2016, artport.whitney.org.

Petra Schmidt, Patterns in Design, Art and
Architecture (Vienna: Birkhäuser, 2006).

Notes
i. This variation was contributed by Tom
White (@dribnet).

22 Code as Creative Medium

23Assignments

Fa
ce

 G
en

er
at

or

24 Code as Creative Medium

Face Generator
Drawing parametric faces

Brief
Write code to design an image of a face that is
parameterized by at least three dimensions of
variability, but preferably more. For example,
you might have variables that specify the size,
position, color, or other visual characteristics
of the eyes, nose, and mouth. The variations in
these features may be used to alter the face’s
expression (happy, sad, angry); the face’s
identity (John, Maria); and/or the face’s species
(cat, monkey, zombie, alien). Give special
consideration to controlling the precise shape
of face parts, such as the curves of the nose,
chin, ears, and jowls, as well as characteristics
like skin color, stubble, hairstyle, blemishes,
interpupillary distance, facial asymmetry,
cephalic index, and prognathism. Differentiate
continuous parameters (such as size and
position of features) and discrete parameters
(such as the presence of piercings, or the
number of eyeballs). Will your faces be 2D or
3D? Will they be shown in a frontal, profile,
or three-quarters view? Your system should
generate a new face whenever the user presses
a button.

Learning Objectives
• Design parametric forms using drawing

functions and the Cartesian coordinate system
• Apply generative design principles to expressive

character design
• Conduct meta-design (design a system to

design things)

Variations
• Use your software to generate a deck of

collectible trading cards (like Pokémon or
baseball cards) featuring a group of imaginary
heroes or monsters. Print out the cards.

• Try using real-world multivariate data as
the basis for generating new faces, instead
of randomness.

• Create an interactive tool that allows people to
make self-portraits in a cartoon style. Document
your software with an example.

• Consider the comparative merits of a design
in which faces are assembled from a diverse
collection of ready-made assets (mustaches,
noses, etc.), versus a design in which faces are
generated from continuously variable curves
and shapes.

• Add functionality to your face so that it responds
to audio, microphone, or speech input.

Making It Meaningful
Humans are equipped with an exquisite
sensitivity to faces. From infancy, we easily
recognize faces and can detect very subtle
shifts in expressions, often being able to discern
the slightest change in mood and sincerity in
ways that remain impossible for computers.
Faces also allow us to readily identify family
resemblances or recognize friends in crowds.
Faces are so central to visual perception that
“the impairment of our face-processing ability is
seen as a disorder, called prosopagnosia, while
unconsciously seeing faces where there are none
is an almost universal kind of pareidolia.”i

This assignment draws inspiration from the
“Chernoff face” data visualization technique,
which leverages this sensitivity by using facial
features to represent multivariate data. In
Chernoff faces, features such as the eyes, ears,
mouth, and nose represent data according to
their shape, size, placement, and orientation.
Whereas Herman Chernoff used 18 variables
to synthesize a face, Paul Ekman and Wallace
Friesen’s Facial Action Coding System analyzes
faces with 46, each variable corresponding to
the action of a different facial muscle.

Works that generate faces present the
conceptual opportunity to devise a possibility
space or an imaginative context for portraits—
like a family album, high school yearbook, or
tradeable card deck.

25Assignments

26 Code as Creative Medium

27Assignments

8 9

10

11

12

13

14

Captions
8. Although Matthias Dörfelt’s Weird Faces
(2012) look hand-drawn, they are entirely
generated by custom software.

9. In Heather Dewey-Hagborg’s astounding
Stranger Visions (2012), forensic 3D portraits
are computed from found DNA fragments.

10. “Chernoff faces” (1973) represent
multivariate data by parameterizing the
shape, size, position, and orientation of the
parts of the face.

11. In Kate Compton’s software Evolving
Faces with User Input (2009), a genetic
algorithm governs a population of faces,
each described with an array of floating point
numbers. By selecting a favorite face, the
user can interactively guide the evolution of
the population.

12. In Mike Pelletier’s Parametric Expression
(2013), values that govern the articulation
of facial models are pushed beyond their
normal limits.

13. In Karolina Sobecka’s All the Universe Is
Full of the Lives of Perfect Creatures (2012),
the visitor puppeteers an avatar according to
the movements of their own face.

14. Prescribed to Death is a wall memorial
comprised of 22,000 pills carved with human
faces, representing Americans who died from
opioid addiction in 2017. Every 24 minutes—
the frequency of U.S. opioid deaths—a
Rhino Grasshopper script directs an onsite
CNC machine to carve a new face into an
additional pill. The project was developed for
the National Safety Council’s “Stop Everyday
Killers” campaign by artist collective
Hyphen-Labs, Energy BBDO, MssngPeces,
and Tucker Walsh.

Additional Projects
Zach Blas, Facial Weaponization Suite,
2011–2014, masks computationally modeled
from aggregate face data.

Lorenzo Bravi, Bla Bla Bla, 2010, sound-
reactive phone application.

Joy Buolamwini, Aspire Mirror, 2015, mirror
and generative face system.

Heather Dewey-Hagborg, How Do You
See Me, 2019, self portraits generated via
adversarial processes.

Adam Harvey and Jules LaPlace, Megapixels,
2017, art and research project.

Hyphen-Labs and Adam Harvey, HyperFace,
2017, computer vision camouflage textile.

Mario Klingemann, Memories of Passersby I,
2018, system for synthesizing portraits using
neural nets.

Golan Levin and Zachary Lieberman, Reface
[Portrait Sequencer], 2007, system for
generating face composites.

Jillian Mayer, IMPRESSIONS, 2017, facial
analysis and billboard campaign.

Macawnivore, Nose Chart, 2014, digital
drawing.

Kyle McDonald and Arturo Castro, Face
Substitution, 2012, face-swapping application
and installation.

Orlan, The Reincarnation of Saint ORLAN,
1990–1993, facial surgery as performance.

Ken Perlin, FaceDemo, 1997, interactive
face simulation.

Readings
Greg Borenstein, “Machine Pareidolia:
Hello Little Fella Meets Facetracker, Idea
for Dozens (blog), UrbanHonking.com,
January 14, 2012.

Charles Darwin, The Expression of
Emotions in Man and Animals (London:
John Murray, 1872).

Heather Dewey-Hagborg, “Sci-Fi Crime
Drama with a Strong Black Lead,” The New
Inquiry, July 16, 2015.

Paul Ekman and Wallace Friesen, Facial
Action Coding System (FACS), 1976.

Zachary Lieberman, “Más Que la Cara
Overview,” Medium.com, April 3, 2017.

Bruno Munari, Design as Art (London:
Penguin Books Ltd., 1971).

Jean Robert and Francois Robert, Face to
Face (Zurich: Lars Muller Publishers, 1996).

George Tscherny, Changing Faces (New York:
Princeton Architectural Press, 2004).

Notes
i. Kyle McDonald, “Face as Interface,”
GitHub repository for Appropriating New
Technologies (NYU ITP), last modified May
11, 2017.

28 Code as Creative Medium

29Assignments

C
lo

ck

30 Code as Creative Medium

Clock
Representing time

Brief
Design a “visual clock” that displays a novel or
unconventional representation of the time.
Your clock should appear different at all times
of the day, and it should repeat its appearance
every 24 hours (or other relevant cycle, if
desired). Challenge yourself to convey the time
without numerals.

You are encouraged to question basic
assumptions about how time is mediated and
represented. Ponder concepts like biological
time (chronobiology), ultradian and infradian
rhythms, solar and lunar cycles, celestial time
and sidereal time, decimal time, metric time,
geological time, historical time, psychological
time, and subjective time. Inform your design
by reading about the history of timekeeping
systems and devices and their transformative
effects on society.

Learning Objectives
• Review and research historical methods, devices,

and systems for timekeeping
• Devise graphic concepts and technologies for

representing time that go beyond conventional
methods of visualization and mediation

• Use programming to design, through the control
of shape, color, form, and motion

• Apply motion graphics techniques to the
representation of temporal information

Variations
• Feel free to experiment with any of the tools

at your disposal, including transparency, color,
sound, dynamism, and physical actuation.
Reactivity to the cursor is optional.

• Avoid using Roman, Arabic, or Chinese
numerals, but make the time readable through
other means, such as by visualizing numeric bit
patterns or using iteration to present countable
graphic elements.

• Make a clock that operates at a much slower
time scale, changing over months, seasons, or
human lifespans.

• Develop your clock for a portable or wearable
device, such as a mobile phone, smart watch,
fitness tracker, or other standalone computer
with a miniature display. Consider incorporating
data from your device’s other sensors into your
design, such as the user’s image, movements,
body temperature, or heartbeat.

• Free yourself from the desktop or laptop screen,
and design your clock for a context of your
own choosing. If you could place your clock
anywhere, where would it be? On the side of a
building? In a piece of furniture? In a pocket?
On someone’s skin, as a digital tattoo? Include
a drawing, rendering, or other mockup showing
your clock as you imagine it in situ.

Making It Meaningful
Attempts to mark time stretch back many
thousands of years, with some of the earliest
timekeeping technologies being gnomons,
sundials, water clocks, and lunar calendars.

Even today’s standard representation of time,
with hours and minutes divided into 60 parts, is
a legacy inherited from the ancient Sumerians,
who used a sexagesimal counting system.

The history of timekeeping is a history driven
by economic and militaristic desires for greater
precision, accuracy, and synchronization. Every
increase in our ability to precisely measure
time has had a profound impact on science,
agriculture, navigation, communications, and, as
always, warcraft.

Despite the widespread adoption of machinic
standards, there are many other ways to
understand time. Psychological time contracts
and expands with attention; biological cycles
affect our moods and behavior; ecological
time is observed in species and resource
dynamics; geological or planetary rhythms
can span millennia. In the twentieth century,
Einstein’s theory of relativity further upended
our understanding of time, showing that it does
not flow in a constant way, but rather in relation
to the position from which it is measured—a
possibly surprising return to the significance of
the observer.

31Assignments

32 Code as Creative Medium

15 16

17

18

19

20

Captions
15. Lee Byron’s Center Clock (2007) displays
the time as countable, bouncy circles. After
each minute passes, 60 white “second”
circles coalesce to form a new violet “minute”
circle, and so on.

16. Using a slit-scan technique, Jussi
Ängeslevä and Ross Cooper’s Last Clock
(2002) presents activity traces from a live
video feed at three different time scales: one
minute, one hour, and one day.

17. In Golan Levin’s Banded Clock (1999),
the seconds, minutes, and hours of the
current time are represented as a series of
countable stripes.

18. Drawing from a gargantuan database of
tweets, All the Minutes by Jonathan Puckey
and Studio Moniker (2014) is a Twitter bot
that reposts mentions of the current time.

19. Mark Formanek’s Standard Time (2003) is
a 24-hour performance in which 70 workers
constantly construct and deconstruct a large
wooden “digital” display of the current time.

20. Ink Calendar by Oscar Diaz (2009) uses
the capillary action of ink spreading across
paper to display the date.

Additional Projects
Maarten Baas, Real Time: Schiphol Clock,
2016, performance and video, Amsterdam
Airport Schiphol.

Maarten Baas, Sweeper’s Clock, 2009,
performance and video, Museum of Modern
Art, New York.

Marco Biegert and Andreas Funk, Qlocktwo
Matrix Clock, US Patent D744,862 S, filed
May 8, 2009, and issued December 8, 2015.

Jim Campbell, Untitled (For The Sun), 1999,
light sensor, software and LED number
display, White Light Inc., San Francisco.

Bruce Cannon, Ten Things I Can Count On,
1997–1999, counting machines with
digital displays.

Mitchell N. Charity, Dot Clock, 2001, online
application.

Taeyoon Choi and E Roon Kang, Personal
Timekeeper, 2015, interactive hardware and
software system, Los Angeles Museum of
Art, Los Angeles.

Revital Cohen and Tuur Van Balen, Artificial
Biological Clock, 2008, data-driven
mechanical sculpture.

Skot Croshere, Four Letter Clock, 2011,
modified electronic alarm clock.

Daniel Duarte, Time Machine, 2013, custom
analog electronics.

Ruth Ewan, Back to the Fields, 2016,
botanic installation.

Daniel Craig Giffen, Human Clock, 2001–
2014, website.

Danny Hillis et al., The Clock of the Long Now,
1986, mechanical system, Texas.

Masaaki Hiromura, Book Clock, 2013, video,
MUJI SHIBUYA, Tokyo.

Tehching Hsieh, One Year Performance (Time
Clock Piece), 1980–1981, performance.

Humans since 1982, The Clock Clock, 2010,
aluminum and analog electronics.

Humans since 1982, A Million Times, 2013,
aluminum and analog electronics.

Natalie Jeremijenko, Tega Brain, Jake
Richardson, and Blacki Migliozzi, Phenology
Clock, 2014, phenology data, software, and
hardware system.

Zelf Koelman, Ferrolic, 2015, software,
hardware, and ferrolic fluid.

Rafael Lozano-Hemmer, Zero Noon, 2013,
software system with digital display.

George Maciunas, 10-Hour Flux Clock,
1969, plastic clock with inserted offset face,
Museum of Modern Art, New York.

John Maeda, 12 O’Clocks, 1996, software.

Christian Marclay, The Clock, 2010, film,
24:00, White Cube, London.

Ali Miharbi, Last Time, 2009, analog wall
clock and interactive hardware.

Mojoptix, Digital Sundial, 2015, 3D-
printed form.

Eric Morzier, Horloge Tactile, 2005,
interactive software and screen.

Sander Mulder, Pong Clock, 2005, inverted
LCD screen and software.

Sander Mulder, Continue Time Clock, 2007,
mechanical system.

Bruno Munari, L’Ora X Clock, 1945, plastic,
aluminum, and spring mechanism, Museum
of Modern Art, New York.

Yugo Nakamura, Industrious Clock, 2001,
Flash program and installation.

Katie Paterson, Time Pieces, 2014, modified
analog clocks, Ingleby Gallery, Edinburgh.

Random International, A Study Of Time,
2011, aluminum, copper, LEDs, and software,
Carpenters Workshop Gallery, London.

Saqoosha, Sonicode Clock, 2008, 2008,
audio waveform generator.

Yen-Wen Tseng, Hand in Hand, 2010,
modified analog electronic clock.

Laurence Willmott, It’s About Time, 2007,
language data, software, and hardware.

Agustina Woodgate, National Times, 2016,
modified electric clock system.

33Assignments

Readings
Donna Carroll, “It’s About Time: A Brief
History of the Calendar and Time Keeping”
(lecture, University Maastricht University,
Maastricht, Netherlands, February 23, 2016).

Johanna Drucker, “Timekeeping,” in
Graphesis: Visual Forms of Knowledge
Production (Cambridge, MA: Harvard
University Press, 2014).

John Durham Peters, “The Times and the
Seasons: Sky Media II (Kairos),” in The
Marvelous Clouds: Toward a Philosophy of
Elemental Media (Chicago: University of
Chicago Press, 2015).

Joshua Foer, “A Minor History of Time without
Clocks,” Cabinet Magazine, Spring 2008.

Amelia Groom, Time (Documents of
Contemporary Art) (Cambridge, MA: MIT
Press, 2013).

Golan Levin, “Clocks in New Media,”
GitHub, 2016.

Richard Lewis, “How Different Cultures
Understand Time,” Business Insider,
June 1, 2014.

Leo Padron, “A History of Timekeeping in
Six Minutes,” August 29, 2011, video, 6:37.

34 Code as Creative Medium

35Assignments

G
en

er
at

iv
e

La
nd

sc
ap

e

36 Code as Creative Medium

Generative Landscape
World-making and terraforming

Brief
Write a program that presents an ever-changing,
imaginative “landscape.” Populate your
landscape with features that are suitable for
your concept: trees, buildings, vehicles, animals,
people, food items, body parts, hairs, seaweed,
space junk, zombies, etc.

Give consideration to the depth of variation in
your landscape: after how much time does your
landscape become predictable? How might you
forestall this as long as possible? How can you
generate a landscape that is both coherent
and engaging?

Consider: foreground, middle-ground, and
background “layers”; variation at the macro-
scale, meso-scale, and micro-scale; natural
and human-made features; utopia, dystopia,
and heterotopia; the immersive use of motion
parallax; and the potential for surprise through
the placement of infrequent features.

Learning Objectives
• Apply principles of generative design to terrain,

scenery, and worlds of the imagination
• Bias randomness to carefully regulate

probabilities
• Carry out a metadesign process

Variations
• Populate your landscape with one or more of the

“three verticals” (people, trees, and buildings):

according to Jungian psychology, these are the
defining psychological features of landscapes.

• Pay attention to the manner in which the
landscape moves past the “camera.” For
example, it might appear to scroll by (as if you
were looking out the window of a train); or
approach from a first-person point of view (as
if you were driving, or riding a roller coaster),
or slide underneath (as if you were looking out of
a glass-bottomed airplane). Consider a moving
or even roving camera, capable of rotation as
well as translation.

• Depict an outside scene, an interior one (such
as objects on a conveyor belt), or an altogether
dreamlike one.

• Experiment with 3D (as in noise terrains); 2D (as
in side-scrolling video games); “2.5D” layered
spaces; orthographic views; or even nonlinear,
non-Cartesian geometries.

• Give consideration to sound and the possibility
for audiovisual synchronicities (as in Guitar
Hero).

• Make an autonomous creature, vehicle, or other
character traverse your landscape.

• Implement features in your landscape that grow,
evolve, or erode over time.

Making It Meaningful
We are a migrant species, instilled with a
wanderlust that continually clamors for new
horizons. Before the modern era of mobility,
landscape paintings were often the primary
means by which people could visualize faraway
lands and mentally escape to them.

Today, eight-year-olds trade “seeds” for favored
Minecraft worlds, and procedurally generated
environments have become commonplace in
video games, where the algorithmic production
of novel landscapes is an economic necessity for
inexhaustible play. For the meta-designer and
artist-programmer, there is assuredly something
godlike about calling forth world upon world. It is
probably not a coincidence that the first all-CGI
sequence in a feature film depicted the synthesis
of an entire planet, in the triumphant “Genesis
Sequence” of Star Trek II (1982).

Generative design systems, whether used to
create faces, landscapes, creatures, or chairs,
define seemingly infinite possibility spaces.
Pay heed, however, to what Kate Compton calls
the “10,000 Bowls of Oatmeal Problem”: “I can
easily generate 10,000 bowls of plain oatmeal,
with each oat being in a different position
and different orientation, and mathematically
speaking they will all be completely unique. But
the user will likely just see a lot of oatmeal.”i
As Compton indicates, the challenge and
opportunity of meta-design is in architecting
systems whose results offer perceptual
uniqueness, and are thus meaningfully distinct.

This assignment asks you to bring forth a world
from your imagination. Alternatively, you may
create an accurate computational representation
of a very real place—and generate “more” of it.

37Assignments

38 Code as Creative Medium

21 22

23

24

25

Captions
21. Daniel Brown generates dystopian
housing projects in his beautifully lit fractal
series, Travelling by Numbers (2016).

22. Kristyn Janae Solie’s Lonely Planets
(2013) is a stylized 3D terrain that shifts
between minimalism and psychedelia.
The work was created for Casey Reas’s
undergraduate course, Live Cinema through
Creative Coding.

23. “Fractional noise” mountains (c. 1982),
developed by Benoît Mandelbrot and
Richard F. Voss at IBM, were a landmark in
mathematical terrain synthesis.

24. Everest Pipkin generates barren flowerpot
landscapes in Mirror Lake (2015), a poetic and
mysterious browser experience.

25. In Jared Tarbell’s classic Substrate
(2003), simulated urban tectonics arise from
elementary principles of accretion, branching,
and feedback.

Additional Projects
Memo Akten and Daniel Berio, Bozork
Quest, 2013, scene generated with a
fragment shader.

Tom Beddard, Surface Detail, 2011, evolving
fractal landscape.

Tom Betts, British Countryside Generator,
2014, procedural world engine.

Ian Cheng, Emissaries, 2015–2017, trilogy of
evolving animated worlds.

Char Davies, Osmose, 1995, interactive VR.

Field.io, Interim Camp, 2009, generative
software and film.

Simon Geilfus, Muon glNext, 2014, landscape
generation software.

Chaim Gingold, Earth: A Primer, 2015,
interactive book app.

Beatrice Glow, Mannahatta VR: Envisioning
Lenapeway, 2016, immersive visualization.

Michel Gondry, Chemical Brothers “Star
Guitar,” 2003, video clip.

Vi Hart et al., Float, 2015, virtual reality game.

Hello Games, No Man’s Sky, 2016, multiplayer
video game.

Robert Hodgin, Audio-Generated Landscape,
2008, audio-generated landscape system.

Robert Hodgin, Meander, 2020, procedural
map generator.

Anders Hoff, Isopleth, 2015, virtual landscape
generator.

Joanie Lemercier, La Montagne, 2016–2018,
digital print on paper and projection.

Jon McCormack, Morphogenesis Series,
2001–2004, computer model and prints on
photo media.

Joe McKay, Sunset Solitaire, 2007, software
projection and performance.

Vera Molnár, Variations St. Victoire, 1989–
1996, silkscreen prints on canvas.

Anastasia Opara, Procedural Lake Village,
2017, generative 3D landscape.

Paolo Pedercini and Everest Pipkin, Lichenia,
2019, city building game.

Planetside Software, Terragen, 2008, scenery
generator software.

Davide Quayola, Pleasant Places, 2015,
digital paintings.

Jonathan Zawada, Over Time, 2011, 3D
models and oil on canvas.

Readings
Kate Compton, Joseph C. Osborn, and
Michael Mateas, “Generative Methods”
(paper presented at 4th Workshop on
Procedural Content Generation in Games,
Chania, Greece, May 2013).

Ian Cheng, “Worlding Raga: 2—What Is a
World?” Ribbonfarm, Constructions in Magical
Thinking (blog), March 5, 2019.

Philip Galanter, “Generative Art Theory,” in A
Companion to Digital Art, ed. Christiane Paul
(Hoboken, NJ: John Wiley & Sons, Inc., 2016),
146–175.

Robert Hodgin, “Default Title, Double Click
to Edit” (lecture, Eyeo Festival, Minneapolis,
MN, June 2014).

Jon McCormack et al., “Ten Questions
Concerning Generative Computer Art,”
Leonardo 47, no. 2 (April 2014): 135–141.

Paolo Pedercini, “SimCities and SimCrises”
(lecture, 1st International City Gaming
Conference, Rotterdam, Netherlands, 2017).

39Assignments

V
ir

tu
al

 C
re

at
ur

e

40 Code as Creative Medium

Virtual Creature
Creating artificial life

Brief
Your job, Dr. Frankenstein, is to create new life.
Program a species of virtual organism: it could
be a sensate creature, a dynamic flock or swarm,
an artificial cell-culture, a novel plant, or an
ecosystem. Your software should algorithmically
generate the form and behavior of your
new lifeform(s). Will they be able to sleep,
reproduce, die, or eat one another? Consider the
relationships between the individuals in your
species and develop a corresponding interplay
of simulated forces such as attraction or
avoidance. Your creature may benefit from
inhabiting an ecosystem or environment
with abiotic elements that present additional
constraints or opportunities.

Give consideration to the potential for your
creature to operate as a cultural artifact. Can it
attain special relevance through metaphor or
commentary or by addressing a real human need
or interest?

Learning Objectives
• Review, discuss, and write functions to animate

different types of organic motion
• Design and implement programs using an

object-oriented programming approach
• Program an interaction between objects

Variations
• Create an ecosystem containing a pair or “dyad”

of creatures that respond to each other in some
way: predator/prey, symbionts, etc.

• Program your creature so that its appearance
arises from its behaviors, or vice versa. For
example, consider how an amoeba’s pseudopod
is both the visual boundary of its body and
also the expression of a tropism. Perhaps the
form of your creature’s body emerges from an
underlying particle simulation, ragdoll physics,
or reinforcement learning system.

• Write object-oriented code to encapsulate your
species of creature. Exchange your code with
other students whose creatures implement the
same protocols (eat, sleep, forage, etc.). Collect
at least two other species and combine them
in an ecosystem. This variation can be executed
using a versioning tool such as GitHub, spurring
insights into collaborative software development
and the importance of code comments.

• Present your digital ecosystem as an augmented
projection, siting it on a specific surface. Can
your (virtual) lifeforms respond to the physical
characteristics of your (real) chosen location?

Making It Meaningful
As the myths of Pygmalion, Golem, and
Frankenstein show, the god-like desire to
create artificial life (AL) persists throughout our
folklore. This impulse also underlies the history
of robotics, where gestures are mechanically
automated in the Karikuri of Japan and in
the early automata of Europe, like Turriano’s
”Praying Monk” (c. 1560) or de Vaucanson’s
“Defecating Duck” (1738). With computers,
software simulations of life systems allow
behaviors and interactions to be programmed

and scaled across massive multiagent systems.
Many of these systems exhibit emergence,
where self-regulation, apparent intelligence, and
coordinated behaviors arise from simple rules
followed by many actors.

Whether the medium is hardware or software,
the goal of AL is to create the impression that an
engineered system is alive. Unlike the creative
work of ”character design,” where the focus
is on visual appearance, this assignment is
concerned with the construction of a creature
with responsive, dynamic behaviors that are
contingent on environmental interactions. To
emphasize this, an instructor may challenge
students to instill lifelike behavior in creatures
whose bodies are restricted to ultra-minimal
forms, such as a pair of rectangles.

A creature without a context is boring—with
nothing to do, and no one to do it to. Stories
happen, character is perceived, meanings are
made when an agent operates on or within an
environment that likewise acts on it. By
placing a creature into feedback with external
forces or subjects, and especially with the
actions of an interacting user, we can create
companions that stave off loneliness or appear
to have feelings, virtual pets like the Tamagotchi
that evoke empathy through their fragility, or
sublime simulated ecosystems that evolve in
surprising ways.

41Assignments

42 Code as Creative Medium

26 27 28

29

Captions
26. Brent Watanabe’s San Andreas Streaming
Deer Cam (2015–2016) is a live video stream
from a computer running a modified version
of Grand Theft Auto V. The artist’s mod
creates an autonomous deer and follows it as
it wanders through a fictional city, interacting
with its surroundings and the game’s AI
characters. During one of its streaming
episodes, the deer wandered along a moonlit
beach, caused a traffic jam on a major
freeway, got caught in a gangland gun battle,
and was chased by the police.

27. Connected Worlds (2015) by Design IO
(Theo Watson and Emily Gobeille) is a large-
scale interactive installation developed for
New York’s Great Hall of Science. The work
presents six immersive habitats, projected
across both walls and floors, that allow
visitors to interact with simulated water flows
and learn about the role of the water cycle in
different ecosystems. Watson and Gobeille
devised dozens of responsive creature
species to populate the space.

28. Neurophysiologist William Grey
Walter’s “tortoises” of 1948–1949 were early
electronic robots capable of phototaxis and
object avoidance.

29. Karl Sims’s Evolved Virtual Creatures
(1994) presents simulated creatures that
evolve charming and idiosyncratic methods of
locomotion using genetic algorithms.

Additional Projects
Ian Cheng, Bob (Bag of Beliefs), 2018–2019,
animations of evolving artificial lifeforms.

James Conway, Game of Life, 1970, cellular
automaton.

Sofia Crespo, Neural Zoo, 2018, creatures
generated with neural nets.

Wim Delvoye, Cloaca, 2000–2007, large-
scale digestion machine.

Ulrike Gabriel, Terrain 01, 1993,
photoresponsive robotic installation.

Alexandra Daisy Ginsberg. The Substitute,
2019, video installation and animation.

Edward Ihnatowicz, Senster, 1970, interactive
robotic sculpture.

William Latham, Mutator C, 1993, generated
3D renderings.

Golan Levin et al., Single Cell and Double Cell,
2001–2002, online bestiary.

Jon McCormack, Morphogenesis Series,
2002, computer model and prints on
photo media.

Brandon Morse, A Confidence of Vertices,
2008, generated animation.

Adrià Navarro, Generative Play, 2013,
generated characters and card game.

Jane Prophet and Gordon Selley,
TechnoSphere, 1995–2002, online
environment and generative design tool.

Matt Pyke (Universal Everything), Nokia
Friends, 2008, generative squishy characters.

Susana Soares, Upflanze, 2014, hypothetical
plant archetypes.

Christa Sommerer and Laurent Mignonneau,
A-Volve, 1994–1995, interactive installation.

Christa Sommerer and Laurent Mignonneau,
Lifewriter, 2006, interactive installation.

Francis Tseng and Fei Liu, Humans of
Simulated New York, 2016, participatory
economic simulation.

Juanelo Turriano, Automaton of a Friar,
c. 1560, Smithsonian Institution, National
Museum of American History.

Jacques de Vaucanson, Canard Digérateur,
1739, automaton in the form of a duck.

Lukas Vojir, Processing Monsters, 2008–2010,
online bestiary.

Will Wright and Chaim Gingold et al., Spore
Creature Creator, 2002–2008, creature
construction software.

Readings
Jean Baudrillard, Simulacra and Simulation
(Ann Arbor: University of Michigan Press,
1994).

Valentino Braitenberg, Vehicles: Experiments
in Synthetic Psychology (Cambridge, MA: MIT
Press, 1984).

Bert Wang-Chak Chan, “Lenia: Biology of
Artificial Life,” Complex Systems 28, no. 3
(2019), 251–286.

Ian Cheng et al., Emissaries Guide to Worlding
(London: Koenig Books, 2018).

Craig W. Reynolds, “Steering Behaviors For
Autonomous Characters,” Proceedings of
the Game Developers Conference (1999),
763–782.

Daniel Shiffman, The Nature of Code:
Simulating Natural Systems with Processing
(self-pub., 2012).

Mitchell Whitelaw, Metacreation: Art and
Artificial Life (Cambridge, MA: MIT Press,
2006).

43Assignments

C
us

to
m

 P
ix

el

44 Code as Creative Medium

Custom Pixel
Reimagining the display

Brief
Pixels are the fundamental building blocks
of bitmap images and digital displays.
Conventionally, pixels are square, uniform, and
parked in a static Cartesian grid. Challenge
these assumptions by writing code to
reconstruct a specific photographic image using
“custom picture elements” of your own devising.
What if pixels were hexagonal? Could they be
arranged on an irregular lattice? What if they
overlapped, moved, or had a variety of sizes?
What if an image was itself constructed from
fragments of other images, or from a database
of tiny icons, symbols, flags, or emojis? Think
carefully about the relationships between your
“pixel concept” and the image you choose to
transform. At no time should your original image
be directly visible.

Learning Objectives
• Reflect on the constitution and perception of

images in art, design, and digital imaging
• Explore the relationship between an image and

its component parts
• Appropriately access low-level pixel data

Variations
• Implement your own style of “Divisionism” by

constructing picture elements from pairs or
triplets of contrasting patches.

• Instead of square pixels, use polar coordinates to
construct an image from annular sectors.

• Design picture elements that resemble
brushstrokes, with control parameters like

“thickness” and “irregularity.” How can these
elements reproduce higher-level visual features
in your original image, such as its edges,
gradients, and spots? Can your brushstrokes
capture the orientations of these features?

• Modify your code so that it interprets a video or
live webcam stream, giving consideration to how
you can reduce frame-to-frame differences and
flickering. What sort of subject matter is best
suited to your algorithm?

• Invent a display that produces images by moving
or rearranging a collection of real, physical
objects (such as pebbles or candy).

• Some image compression algorithms operate by
means of specially designed picture elements.
Read about quadtrees, run-length encoding,
dictionaries of 8x8-pixel JPEG blocks, and
Gabor wavelets. Devise a compression algorithm
inspired by one of these techniques. What are
the aesthetics and artifacts of your algorithm?

Making It Meaningful
Artworks comprised of novel pixels are literally
“new media”; they illustrate McLuhan’s well-
worn adage that the medium (itself) is the
message. The impact of this message can be
weakened, however, when a novel imaging
technique is applied without consideration to
its subject. Is the project “just a display”? A key
path to the production of meaning in this genre
of work, therefore, is the purposeful creation of a
relationship between form and content: between
the nature of a display’s constituent picture
elements and the subjects they portray. Projects

by Chris Jordan, El Anatsui, and Jenny Odell, for
example, present the conceptual contradiction
that arises when something valuable appears to
be wholly constructed out of trash or detritus.

Custom picture elements can create intrigue at
multiple scales, allowing for new ways of seeing
that urge the viewer to reconsider the experience
of image consumption. What was formerly an
instantaneous phenomenon (“I saw it”) becomes
an interactive process of close observation
(“I examined it”). A common strategy is to
alternately create and resolve visual ambiguity.
Images constructed using a photomosaic
technique, for example, provide an engrossing
means by which fans can “zoom in” to reminisce
about a favorite subject. The Pointillist and
Divisionist painters of the late 1800s, by
contrast, created paintings that required the
viewer to “zoom out,” actively fusing spots of
colors in their mind’s eye in order to recognize
the painting’s subject. Multi-scale works also
defy easy reproduction, increasing their aura.

The use of custom picture elements can
prompt reflection about the conditions of image
production. When we pore over a Byzantine
micromosaic, we marvel at the evident labor that
went into creating and placing each individual
tile. Contemporary artworks like 10,000 Cents by
Koblin and Kawashima address these conditions
directly, making use of networked labor markets
like Mechanical Turk to question the nature of
digital economies and authorship.

45Assignments

46 Code as Creative Medium

47Assignments

30 31

32

33

34

35

36

37

Captions
30. Aram Bartholl’s 0,16 (2009) is a wholly
analog light installation that uses translucent
paper to transform the visitors’ shadows into
large-scale pixels.

31. Textile arts such as weaving, knitting, and
needlepoint are ancient cultural practices of
pixel logic. In works like South of The Border
(1958, shown here in detail), textile designer
and Bauhaus educator Anni Albers used
ingenious combinations of threads to produce
custom pixels.

32. Leon Harmon and Ken Knowlton’s Studies
in Perception #1 (1966) is a mosaic of small
scientific symbols, arranged into the form of a
nude using Knowlton’s BEFLIX programming
language. It appeared on the front page of the
New York Times on October 11, 1967, and was
shown in the Museum of Modern Art’s 1968
exhibition The Machine as Seen at the End of
the Mechanical Age, introducing computer art
to a broad American public for the first time.

33. Jenny Odell describes her Garbage Selfie
as “a self portrait composed of everything I
threw away, recycled or composted between
February 10 and March 1, 2014.”

34. Charles Gaines dissects photographs
into grids of hand-painted elements, using
indeterminacy and other mathematical
principles, in order to explore the constructed
nature of representation. Shown here and in
detail is his Numbers and Trees: Central Park
Series II: Tree #8, Amelia (2016), a photograph
with acrylic on plexiglas.

35. Aaron Koblin and Takashi Kawashima’s
10,000 Cents (2008, shown here in detail)
is a crowdsourcing system that produced
a representation of a US $100 bill. The
artists write: “Using a custom drawing tool,
thousands of individuals working in isolation

from one another painted a tiny part of
the bill without knowledge of the overall
task. Workers were paid one cent each via
Amazon’s Mechanical Turk.” The project’s
conditions of production and distribution
perhaps inadvertently highlight the inequity
of distributed labor markets.

36. Daniel Rozin has spent decades
producing hand-crafted pixels from every
material imaginable including wood, fur, and
even toy penguins. His Peg Mirror (2007)
consists of 650 wooden dowels that are
cut on an angle and individually motorized.
As they rotate, the pegs catch light or cast
shadows, recreating the scene captured by a
central camera.

37. Scott Blake’s Chuck Close Filter software
(2001–2012) transforms any image into the
pixelated style of a Chuck Close painting.
Following its release, Blake was threatened
with legal action by Close, who asserted
that the software trivialized his art and
threatened his livelihood. Blake’s Self Portrait
Made with Lucas Tiles (2012) is wholly
constructed of squares taken from Close’s
painting Lucas (1991).

Additional Projects
El Anatsui, Earth Shedding Its Skin, 2019,
aluminum and copper wire.

Angela Bulloch, Horizontal Technicolor, 2002,
modular light sculpture.

Jim Campbell, Reconstruction Series,
2002–2009, custom electronics, LEDs, and
cast resin screens.

Evil Mad Scientist Laboratories, StippleGen,
2012, image processing software.

Frédéric Eyl and Gunnar Green, Aperture,
2004–05, interactive facade.

Kelly Heaton, Reflection Loop, 2001, kinetic
sculpture with Furby pixels.

Chris Jordan, Running the Numbers II:
Portraits of Global Mass Culture, 2009–,
variable material.

Rafael Lozano-Hemmer, Pareidolium, 2018,
software, camera, and ultrasonic atomizers.

Vik Muniz, Pictures of Garbage, 2008,
photographed arrangements of detritus.

Everest Pipkin, Unicode Birds, 2013–2019,
unicode and twitter bot.

Gonzalo Reyes-Araos, RGB Paintings,
2018, oil on paper, mounted on aluminum,
KINDL Berlin.

Elliat Rich, What colour is the sky, 2011,
printed aluminum swatches and steel frame.

Peiqi Su, The Penis Wall, 2014, kinetic
sculpture.

Tali Weinberg, 0.01% of vacant potential
homes, 2012, archival pigment print on paper.

Readings
Scott Blake, “My Chuck Close Problem,”
Hyperallergic, July 9, 2012.

Meredith Hoy, From Point to Pixel: A
Genealogy of Digital Aesthetics (Hanover, NH:
Dartmouth College Press, 2017).

Christopher Jobson, “People as Pixels,” This Is
Colossal, February 24, 2012.

Julius Nelson, Artyping (Johnstown, PA:
Artyping Bureau, 1939).

Omar Shehata, “Unraveling the JPEG,”
Parametric Press 1 (Spring 2019): n.p.

Rob Silvers, “Photomosaics: Putting Pictures
in Their Place” (master’s thesis, MIT, 1996).

Barrie Tullett, Typewriter Art: A Modern
Anthology (London: Laurence King
Publishing, 2014).

48 Code as Creative Medium

49Assignments

D
ra

w
in

g
M

ac
hi

ne

50 Code as Creative Medium

Drawing Machine
Tools for doodling and depicting

Brief
Create a program that expands, augments,
muddles, complicates, questions, analyzes,
spoils, undermines, improves, accelerates, or
otherwise alters the concept or act of drawing.
Clarify the intent of your system, such as
whether your project is a tool, toy, game, or
performance instrument. Demonstrate its
unique properties by using it to produce a series
of at least three drawings.

Learning Objectives
• Deeply examine the process of drawing
• Evaluate the affordances and artifacts of

creative tools
• Use appropriate data structures for recording,

storing, and manipulating gesture data

Variations
• Create a system that brings drawings to life.
• Question intent. Derive marks from the actions

of an entity that is (probably) unaware that it is
drawing: a pedestrian, a turtle, a kite.

• Deprivilege the dominant hand. Make a drawing
tool that is operated by the user’s face, voice, or
some other part of their body.

• Drawing is usually conceived as a solo activity.
Create a drawing machine that requires two
people to operate it.

• Make a “single purpose” drawing machine, such
as a tool that can only draw ducks.

• Identify and challenge some other basic
assumption about drawing, such as the notion
that drawings are made on a flat surface; that

drawings are recordings that are meant to
endure; that drawings can be “finished”; or that
drawings are distinct from text.

• Make a tool that functions critically—for
instance, that rejects the technological
imperatives of accuracy, realism, and utility and
instead prioritizes expressivity, irreproducibility,
and whimsy.

• Develop a system that analyzes and derives
insights from a database of drawings.

Making It Meaningful
“Make your own paintbrush” is a classic art
school prompt, encouraging students to create
tools from parts of the body or found materials.
The exercise personalizes and defamiliarizes
the act of mark-making, and invites a deeper
consideration of how tools and technologies
shape artistic expression. The Drawing Machine
assignment captures this spirit in the domain of
software, opening up questions of constraints,
autonomy, and augmentation in human-machine
collaboration.

The act of drawing translates gesture from
the body to the page through an apparatus.
The primogenitor of today’s computational
drawing tools was Sketchpad, developed by
Ivan Sutherland as part of his MIT PhD thesis
in 1963, which made it possible for a person
and a computer “to converse rapidly through
the medium of line drawings.”i Widely credited
as the first graphical user interface, Sketchpad
substituted page for screen and leveraged the

infinite malleability of virtual form for the first
time. Its descendants, like AutoCAD, Photoshop,
and Illustrator, are now mature products, and
their interaction vocabularies have become
standardized and ubiquitous and thus taken for
granted. Innovating in this space now requires
either breaking a core assumption about
drawing, or experimenting with mark-making in
unfamiliar contexts.

51Assignments

52 Code as Creative Medium

53Assignments

38 39

40

41 42

43

44

45

Captions
38. The paintings in Addie Wagenknecht’s
Alone Together series (2017) are produced
by a Roomba domestic robot as it traces
around the artist’s reclining body, smearing
International Klein Blue paint as it goes. The
work responds to both the technologized
automation of labor and the history of
action painting, where women’s bodies were
sometimes used as paint brushes.

39. Sougwen Chung collaborates with semi-
autonomous robot arms to produce drawings
like those in her Drawing Operations series
(2015–2018).

40. To create Tree Drawings (2007), Tim
Knowles attaches pencils to the limbs of trees
and captures the resulting marks on paper.

41. The Sketch Furniture (2007) system by
Swedish agency Front Design combines
motion capture and digital fabrication. Using
this system, a designer can record three-
dimensional, freehand drawings of virtual
furniture at a 1:1 scale, and then fabricate
these forms using a large-scale 3D printer.

42. Graffiti Research Lab was a collective
dedicated to outfitting artists and protesters
with open-source technologies for urban
communication. In L.A.S.E.R. Tag (2007), a
computer vision system tracks the spot of a
user’s handheld laser pointer. A high-power
video projection, calibrated to the camera
system, enables the user to display their tags
at an architectural scale.

43. Sloppy Forgeries (2018) by Jonah
Warren is a game in which players, using
computer mice and simplified color palettes,
race to draw the most accurate replicas of
famous paintings.

44. In Julien Maire’s Digit performance
(2006), poetic texts magically appear
beneath the artist’s fingertip as he runs it
across a sheet of white paper. Mechanisms
from a thermal printer have been discreetly
concealed under his hand.

45. Paul Haeberli’s DynaDraw (1989) is an
early computational drawing environment
in which the brush is modeled as a springy
physical object with simulated mass, velocity,
and friction. The augmentation of the drawing
process with exaggerated virtual physics, and
a range of adjustable parameters, leads to
new forms of gestural and calligraphic play.

Additional Projects
Akay, Tool No. 10: Robo-Rainbow, 2010, device
for spray-painting rainbows.

Peter Edmunds, SwarmSketch, 2005,
collaborative digital canvas.

Free Art and Technology (F.A.T.) Lab,
Eyewriter, 2009, eye-tracking drawing tool.

William Forsythe, Lectures from Improvisation
Technologies, 1994, video series.

Ben Fry, FugPaint, 1998, antagonistic paint
program.

Johannes Gees, Communimage, 1999, digital
collaborative collage.

David Ha, Jonas Jongejan, and Ian Johnson,
Sketch-RNN Demos, 2017, neural network
drawing experiment.

Desmond Paul Henry, Serpent, 1962, pen and
ink mechanical drawing, Victoria and Albert
Museum, London.

Jarryd Huntley, Art Club Challenge, 2018,
drawing game iOS app.

Jonas Jongejan et al., Quick, Draw!, 2017,
drawing game with neural net.

So Kanno and Takahiro Yamaguchi, Senseless
Drawing Bot, 2011, chaotic drawing robot.

Soonho Kwon, Harsh Kedia, and Akshat
Prakash, Anti-Drawing Machine, 2019,
antagonistic drawing machine.

Louise Latter and Holly Gramazio, Doodle,
2020, exhibition of software art at
Birmingham Open Media (BOM).

Jürg Lehni, Viktor, 2011, scalable robotic
drawing machine.

Golan Levin, Yellowtail, 1998, audiovisual
animation software.

Zachary Lieberman, Drawn, 2005, interactive
installation.

Zachary Lieberman, Inkspace, 2015,
accelerometer-dependent drawing app.

John Maeda, Timepaint, 1993, drawing
software demonstration.

Kyle McDonald and Matt Mets,
Blind Self-Portrait, 2011, machine-aided
drawing system.

JT Nimoy, Scribble Variations, 2001,
drawing software.

Daphne Oram, Oramics Machine, 1962,
photo-input synthesizer for “drawing sound.”

James Paterson and Amit Pitaru, Rhonda
Forever, 2003–2010, 3D drawing tool.

Pablo Picasso, Light Paintings, 1950, long-
exposure photographs by Gjon Mili, Museum
of Modern Art, New York.

Amit Pitaru, Sonic Wire Sculptor, 2003, app
for 3D drawing and composition.

Eric Rosenbaum and Jay Silver,
SingingFingers (Finger Paint with Your Voice),
2010, software for fingerpainting with sound.

Toby Schachman, Recursive Drawing, 2012,
drawing software.

Karina Smigla-Bobinski, ADA, 2011, analog
interactive installation.

54 Code as Creative Medium

Alvy Ray Smith and Dick Shoup, SuperPaint,
1973–75, 8-bit paint system.

Scott Snibbe, Bubble Harp, 1997, drawing
software implementing Voronoi diagrams.

Scott Snibbe, Motion Phone, 1995–2012,
networked animation system.

Scott Snibbe et al., Haptic Sculpting, 1998,
prototype software for physically mediated
haptic sculpting.

Laurie Spiegel, VAMPIRE, 1974–1979, color-
music mixing software.

Christine Sugrue and Damian Stewart, A
Cable Plays, 2008, audiovisual performance.

Ivan E. Sutherland, Sketchpad: A Man-
Machine Graphical Communication System,
1964, drawing program.

Clement Valla, A Sequence of Lines
Consecutively Traced by Five Hundred
Individuals, 2011, video.

Jeremy Wood, GPS Drawings, 2014, drawings
from GPS data.

Iannis Xenakis, UPIC, 1977, graphical music
scoring system.

Readings
Pablo Garcia, “Drawing Machines,”
DrawingMachines.org, accessed
April 14, 2020.

Jennifer Jacobs, Joel Brandt, Radomír Mech,
and Mitchel Resnick, “Extending Manual
Drawing Practices with Artist-Centric
Programming Tools,” in Proceedings of the
2018 CHI Conference on Human Factors in
Computing Systems (New York: Association
for Computing Machinery, 2018), 1–13.

Golan Levin, “2-02 (Drawing),” Interactive
Art and Computational Design, Carnegie
Mellon University, Spring 2016, accessed
April 14, 2020.

Zach Lieberman, “From Point A to Point B”
(lecture, Eyeo Festival, Minneapolis, MN, June
2015), video, 7:20–19:00.

Scott Snibbe and Golan Levin, “Instruments
for Dynamic Abstraction,” in Proceedings
of the Symposium on Nonphotorealistic
Animation and Rendering (New York:
Association for Computing Machinery, 2000).

Notes
i. Ivan E. Sutherland, “Sketchpad: A Man-
Machine Graphical Communication System,”
Simulation 2, no. 5 (1964): R-3.

55Assignments

M
od

ul
ar

 A
lp

ha
be

t

56 Code as Creative Medium

Modular Alphabet
Structuring letterforms with a common model

Brief
Design a typeface (using any graphic primitives
you prefer) so that all of the letters of the
alphabet are structured by the same software
parameters and graphic logic. For example, you
might design an alphabet in which every letter is
exclusively constructed from three arcs, or from
four rectangles, or from a small grid of squares.
After you have designed all of your letters,
typeset the entire alphabet in a single image so
that it can be seen at a glance.

An essential technical goal is for you to store
descriptive parameters for your letters in some
kind of array or object-oriented data structure,
and then create a single function that renders
any requested letter from this data. If you’re
writing individual functions to draw each letter,
you’re doing something wrong.

Learning Objectives
• Conceive and appraise graphical concepts for

dynamic typography
• Use parameters to manipulate and/or

animate letterforms
• Apply principles of metadesign to font design
• Use arrays to store geometric data

Variations
• Typeset a carefully chosen word that has a

special relationship to your letterforms’ design.
• Give your letters inherently unstable properties.

Animate them by deflecting their control points

with a sinusoidal wiggle, Perlin noise, or real-
time interactivity.

• Create a system to animate the transitions
between letterforms, allowing any letter to
smoothly morph into any other. Pressing a
key should initiate an animated transition
(of approximately a second’s duration) from
the previous letter to the next desired letter.
Instructors: for introductory students, it may be
helpful to provide a template for transitioning
between letterforms.

• Consider a design in which letters are traces
deposited by moving particles—whose paths
are affected by forces from different spatial
configurations of attractors and repulsors.

• A “forced aligner” is a computer program that
takes audio files and their transcripts and
returns extremely precise timing information.
Using your typeface and a “forced aligner”
(such as Gentle by Ochshorn & Hawkins), create
time-synced dynamic typography that not only
synchronizes perfectly with a speech file, but
also responds parametrically to the sound of the
speaker’s voice.

Making It Meaningful
Extending from Adrian Frutiger’s Univers (1954),
Donald Knuth’s computational METAFONT
(1977), and Adobe’s “Multiple Master” fonts
(1994), it has become increasingly common
practice to design highly adaptable type systems
that go far beyond the rigid limits of static
typefaces. Peter Biľak writes: “Prior to Univers,
type designers concerned themselves with

the relationships between letters of the same
set, how an ’A’ is different from a ’B’. Univers
goes beyond the quest to design individual
letters, attempting instead to create a system of
relationships between different sets of shapes
which share distinctive parameters.”i

This prompt prioritizes the creative value of
constraints. Restricted to designing letterforms
with shared parameters, it requires modularity,
economy, and an ingenuity about shapes
whose variety and complexity students often
take for granted. The expressive potential for
contingent, interactive, and subtly time-varying
form systems should not be overlooked. Take a
moment to reflect on your resultant type system.
For which letters does the structuring pattern
succeed best or fail hardest?

57Assignments

58 Code as Creative Medium

59Assignments

46 47

48

49

50

51

52

53

54

Captions
46. Nikita Pashenkov’s Alphabot (2000)
is a Transformer-like virtual robot “that
communicates with humans by changing
its shape to form characters of the English
alphabet.” The 3D robot is constructed from
eight hinged segments, and can smoothly re-
fold its shape into any letterform.

47. Mary Huang’s Typeface: A Typographic
Photobooth (2010) is a font whose parameters
(such as slant, x-height, etc.) are governed by
signals from a real-time face tracker.

48. David Lu’s Letter 3 (2002) presents an
interactive alphabet whose letters are formed
by manipulating the control points of a single,
compound Bézier curve. Each letter can fluidly
transform into any other.

49. In Peter Cho’s classic Type Me, Type Me
Not (1997), each letter is constructed from two
“Pac-Man” filled arcs and is represented by just
ten numbers.

50. In Yuichiro Katsumoto’s Mojigen & Sujigen
(2016), six interconnected electromechanical
elements form the letters of the alphabet by
moving into different positions.

51. Bruno Munari’s ABC with Imagination
(1960), a children’s alphabet book, included a
set of modular pieces for typographic play.

52. In 1878, amidst widespread use of the
calligraphic Fraktur blackletter, inventor
Friedrich Soennecken sought to modernize
and rationalize German typography and
penmanship. Soennecken developed
Schriftsystem, a method for constructing
glyphs exclusively from arcs and straight lines.
Decades later, his system influenced the design
of the German Institute for Standardization’s
DIN 1451 Engschrift typeface, now used
throughout Germany for many purposes.

53. Fregio Mecano (“mechanic ornament”)
is a set of 20 modular, geometric shapes for
constructing letters and images in highly
flexible ways. Devised in Italy by Giulio da
Milano in the early 1930s, it was released by
the Nebiolo typefoundry.

54. Julius Popp’s bit.fall (2001–2016)
produces ephemeral texts by releasing
droplets of water through a series of precisely
timed, computer-controlled solenoid valves.

Additional Projects
Agyei Archer, Crispy, 2017, variable font.

Erik Bernhardsson, Analyzing 50K Fonts
Using Deep Neural Networks, 2016, machine-
learning font.

Michael Flückiger and Nicolas Kunz, LAIKA:
A Dynamic Typeface, 2009, interactive font.

Christoph Knoth, Computed Type, 2011,
interactive typographic system.

Donald Knuth, METAFONT, 1977–1984, font
design system.

Urs Lehni, Jürg Lehni, and Rafael Koch, Lego
Font Creator, 2001, font.

John Maeda, Tangram Font, 1993, font.

JT Nimoy, Robotic Type, 2004, robotic
typographic system.

Michael Schmitz, genoTyp, 2004, genetic
typography tool.

Kyuha (Q) Shim, Code & Type, 2013, book
and website.

Joan Trochut, Supertipo Veloz, 1942, modular
type system digitized by Andreu Balius and
Àlex Trochut in 2004.

Julieta Ulanovsky, Montserrat, 2019,
variable font.

Flavia Zimbardi, Lygia, 2020, variable font.

Readings
Johanna Drucker, The Alphabetic Labyrinth:
The Letters in History and Imagination
(London: Thames and Hudson, 1995).

C. S. Jones, “What Is Algorithmic
Typography?,” Creative Market (blog),
May 2, 2016.

Christoph Knoth, “Computed Type Design”
(master’s thesis, École Cantonal d’Art de
Lausanne, 2011).

Donald Knuth, “The Concept of a Meta-Font,”
Visible Language 16, no. 1 (1982): 3–27.

Jürg Lehni, “Typeface as Programme,”
Typotheque.

Ellen Lupton, Thinking with Type: A Critical
Guide for Designers, Writers, Editors, and
Students (New York: Princeton Architectural
Press, 2010).

Rune Madsen, “Typography,” lecture for
Programming Design Systems (NYU).

“Modular Typography,” Tumblr.

François Rappo and Jürg Lehni, Typeface
as Programme (Lausanne, France: École
Cantonal d’Art de Lausanne, 2009).

Dexter Sinister, “Letter & Spirit,” Bulletins of
the Serving Library 3 (2012).

Alexander Tochilovsky, “Super-Veloz:
Modular Modern” (lecture, San Francisco
Public Library, March 13, 2018).

Notes
i. Peter Biľak, “Designing Type Systems,”
2012, ilovetypography.com.

60 Code as Creative Medium

61Assignments

D
at

a
S

el
f-

Po
rt

ra
it

62 Code as Creative Medium

Data Self-Portrait
Quantified selfie

Brief
Create a visualization that presents insights
from a dataset about yourself. You may use
pre-existing data (such as your email archive,
fitness tracker data, etc.) or create a new system
specifically for collecting data about an aspect
of your life. The data you collect need not be
temporal; for example, you might reimagine your
wardrobe as a database of interrelated items.
Can you collect data about phenomena that
nobody has seen or thought of before?

Your visualization is a tool you’re building to
help you answer a question about yourself. You
can use existing measurement technologies, or
devise new manual or automatic data collection
techniques. You’re encouraged (but not required)
to combine multiple sources of data, to make
interesting comparisons.

Learning Objectives
• Implement the complete pipeline of information

visualization: from data acquisition, parsing,
and cleaning to representation, distillation,
and interaction

• Identify and use fundamental data structures
• Carry out an in-depth consideration of

information aesthetics

Variations
• Give yourself permission to be specific.

Sometimes focusing your investigation on a
subset of your data is not only simpler, but
can be much more interesting. For example,

instead of visualizing all of your text messages (a
study of your texting behavior), what if you only
examine the ones you exchanged with a certain
person (a study of your relationship)?

• Take time-stamped data and present it in a
way that does not use a timeline. Consider your
email: While you can certainly visualize it as a
timeline (e.g., the number of emails you process
per day), you could also view it as a graph (e.g.,
the social network of your contacts), or as a
histogram (e.g., the words you use most often).

• Build a custom device to capture data about
yourself, using a novel sensor, or by mounting a
sensor in an unexpected place.

• Give your data-capture system to your friends.
Ask them to collect data for two weeks.
Produce a set of what Edward Tufte calls “small
multiples”: uniform visualizations that allow your
friends’ data to be easily compared.

• Create an interactive visualization. Consider how
your project can allow operations like zooming,
sorting, filtering, and/or querying.

Making It Meaningful
Databases are amassed from our digital
communications, search histories, transactions,
step counts, sleep patterns, and journeys. How
do we make sense of this “data exhaust” and
how does this change our understanding of
ourselves? What data is collected and what is
not? What sorts of activities resist quantification
and measurement and why? This task invites
a deep exploration of portraiture and self-
representation in the age of quantification.

Corporate and governmental surveillance is
changing our lives on both personal and societal
scales. How does the knowledge that our lives
are being recorded change them? Consider
how fitness tracking, initially celebrated by the
quantified self community for its promise of new
insight, was later aggressively promoted by the
insurance industry and, in some cases, became
required by employers. Likewise, consider the
data collected by major social media platforms,
and how this data feeds targeted advertising,
structures the algorithmic presentation of
online content, and produces contemporary
phenomena like filter bubbles.

63Assignments

64 Code as Creative Medium

65Assignments

55 56

57

58

59

60

Captions
55. Shan Huang’s Favicon Diary (2014),
developed while she was a student at
Carnegie Mellon, is a chronologically ordered
compilation of the favicons from every
website that she visited over the course of
several months. In addition to producing her
own data self-portrait, Huang also released
a Google Chrome browser extension so that
others could do the same.

56. In Dear Data (2016), a year-long project,
Giorgia Lupi and Stephanie Posavec mailed
weekly hand-drawn postcards to each other
that visualized some (quantified) aspect of
their lives, such as the number of doors they
entered, or how many times they laughed.

57. Tracey Emin’s Everyone I Have Ever
Slept With 1963–1995 (1995) is a tent with
the names of Emin’s lovers embroidered on
the inside.

58. Fernanda Viégas’s Themail
(2006) analyzes the contents of email
correspondence, showing the significant
words that characterize each relationship.

59. Responding to a late-1970s surge in
interest in the body’s natural circadian
rhythms, Sonya Rapoport’s Biorhythm
Audience Participation Performance
(1981) used a commercial kit to predict
her daily biorhythms, then compared her
own experience with the computerized
predictions.

60. Stay (2011) is an example of Hasan Elahi’s
ongoing “self-surveillance” work, in which
he collects photographs of his daily life and
preemptively sends them to the FBI.

Additional Projects
Rachel Binx, Wi-Fi Diary, 2014, image
capture software.

Beatriz da Costa, Jamie Schulte, and
Brooke Singer, Swipe, 2004, performance
and installation.

Hang Do Thi Duc and Regina Flores Mir, Data
Selfie, 2017, browser extension.

W. E. B. Du Bois, charts prepared for the
Negro Exhibit of the American Section at
the Paris Exposition Universelle, 1900, ink
on posterboard.

Luke DuBois, Hindsight Is Always 20/20,
2008, light boxes, software, and presidential
speech transcripts.

Takehito Etani, Masticator, 2005, electronic
wearable with audiovisual feedback.

Nick Felton, Annual Reports, 2005–2014,
letterpress and lithograph.

Laurie Frick, Time Blocks Series, 2014–2015,
wood-based data visualization.

Brian House, Quotidian Record, 2012,
vinyl record.

Jen Lowe, One Human HeartBeat, 2014, online
biometrics visualization.

Katie McCurdy, Pictal Health: Health History
Visualization, 2014, health data software.

Lam Thuy Vo, Quantified Breakup (blog),
Tumblr, October 23, 2013–September
25, 2015.

Stephen Wolfram, “The Personal Analytics of
My Life,” Stephen Wolfram: Writings (blog),
March 8, 2012.

Readings
Witney Battle-Baptiste and Britt Rusert,
eds., W. E. B. Du Bois’s Data Portraits:
Visualizing Black America (San Francisco:
Chronicle Books, 2018).

Robert Crease, “Measurement and Its
Discontents,” New York Times, October
22, 2011.

Judith Donath et al., “Data Portraits,” in
Proceedings of SIGGRAPH 2010 (New York:
Association for Computing Machinery, 2010),
375–83.

Ben Fry, Visualizing Data: Exploring and
Explaining Data with the Processing
Environment (Sebastopol, CA: O’Reilly Media,
Inc., 2008).

Giorgia Lupi, “Data Humanism: The
Revolutionary Future of Data Visualization,”
Printmag, January 30, 2017.

Chris McDowall and Tim Denee, We Are Here:
An Atlas of Aotearoa (Auckland, NZ: Massey
University Press, 2019).

Scott Murray, Creative Coding and Data
Visualization with p5.js: Drawing on the Web
with JavaScript (Sebastopol, CA: O’Reilly
Media, Inc., 2017).

Gina Neff and Dawn Nafus, Self-Tracking
(Cambridge, MA: MIT Press, 2016).

Maureen O’Connor, “Heartbreak and the
Quantified Selfie,” NY Magazine, December
2, 2013.

Brooke Singer, “A Chronology of Tactics: Art
Tackles Big Data and the Environment,” Big
Data and Society 3, no. 2 (December 2016).

Edward R. Tufte, The Visual Display of
Quantitative Information (Cheshire, CT:
Graphics Press, 2001).

Jacoba Urist, “From Paint to Pixels,” The
Atlantic, May 14, 2015.

66 Code as Creative Medium

67Assignments

A
ug

m
en

te
d

Pr
oj

ec
tio

n

68 Code as Creative Medium

Augmented Projection
Illuminated interventions

Brief
Design a projected decal for a physical place
or object. Your response could be a time-
based display of graphics or video specifically
composed to illuminate something other
than a blank projection screen. Your imagery
might relate to (and elicit new meanings from)
otherwise banal architectural features in a wall,
such as a power outlet, doorknob, water spigot,
elevator buttons, or window frame. You might
design a projection for a specific object, or, if you
are able, for a dynamic site such as a vehicle or a
performer’s body.

Sketch some poetic or playful concepts for
imagery that relates to the geometric, structural,
historical, or political features of your site.
Create your concept in code, and project your
imagery onto your site or object, taking special
care to document it. If your design requires
precise alignment between virtual and physical
spaces, you’ll need a tool for projector calibration
and keystone correction. Consider libraries
like Keystone (for Processing), ofxWarp (for
openFrameworks), Cinder-Warping (for Cinder),
or software like Millumin or TouchDesigner.

Learning Objectives
• Review techniques for working with projectors
• Employ code and light to create relationships

between real and virtual, physical and digital
• Design and realize a site-specific artistic

concept or experiment

Variations
• Reinterpret a classic arcade game such as

Pong, Snake, Qix, or Pac-Man so that it uses a
specific wall as a playing field. Incorporate the
wall’s windows and other features into the
game as obstacles.

• Create an audiovisual presentation in which
features of a real environment are activated by
colored projections, synchronized to music.

• Create an “in-situ data visualization” that
projects information about a site onto that site.
This could take the form of a superimposed
“x-ray,” datagraph, political commentary, etc.

• Use a physics library, such as Box2D, to
orchestrate realistic-looking “collisions” between
your projected graphics and the actual physical
features of your site.

• Give consideration to scale. Small is OK.
• Use computer vision to assist with feature

detection, projector calibration, and alignment.
• Create an ecosystem of virtual creatures using

simulation principles such as flocking. Have
the creatures respond to the features of your
chosen wall.

Making It Meaningful
A wide range of new meanings awaits when
an illuminated virtual layer is superimposed
onto the physical world. Projection can operate
as a commentary or a critique, an intervention
to probe the historical or political dimensions
of a building or monument. In other uses,
the projection is a site-specific information
visualization, revealing the internal structures

of places or objects, the activities that occur
in relation to them, or the resources required
in their operation. In performance contexts,
projections have created new opportunities
for responsive set designs, shadow-play,
and choreographies of “digital costumes”:
responsive, projected displays that are tightly
coupled to a performer’s body and movements.
Augmented projections range from spectacular
public illusions that make buildings appear to
shimmer, to intimate poetic gestures at the scale
of the human face.

The key challenge is to create a strongly
motivated relationship between real and virtual:
between the projected light and the specific
person, place, or thing onto which it is projected.
Exemplary works accomplish this through a
combination of both formal and conceptual
engagement with the site. Choices about what
to project on, and what to project on it, are
made simultaneously.

69Assignments

70 Code as Creative Medium

71Assignments

61 62

63

64

65

66

67

68

69

70

Captions
61. Krzysztof Wodiczko’s Warsaw Projection
(2005) augmented the façade of the
Zachęta National Gallery to focus on the
unequal social status of women. Videos of
women supporting an entablature inscribed
Artibus (“for the arts”) were presented as
architectural caryatids. (Image © Krzysztof
Wodiczko, courtesy Galerie Lelong & Co.,
New York.)

62. In Michael Naimark’s Displacements
(1980), a slowly rotating motion picture of
a fabricated (and inhabited) living room is
projected back onto the selfsame objects,
which have been painted white.

63. In Sunset Solitaire (2007), Joe McKay
performs on custom software to create
a projection that continually “matches”
the sunset.

64. Nuage Vert (2008) by HeHe (Helen
Evans and Heiko Hansen) visualizes a
power station’s energy consumption with a
projected laser outline.

65. In Scenic Jogging (2010), Jillian Mayer
enters a landscape projected from a
moving vehicle.

66. Apparition (2004), a dance performance
by Klaus Obermaier and the Ars Electronica
Futurelab, uses computer vision to project
imagery onto Desiree Kongerod and
Robert Tannion.

67. Keyfleas (2013) was an interactive
projection developed by a first-year
undergraduate, Miles Hiroo Peyton. A flock
of small creatures appear to inhabit the
surface of a computer keyboard, swarming to
investigate keys as they are pressed.

68. In Pablo Valbuena’s influential Augmented
Sculpture (2006–2007), a collection of simple
rectangular volumes form the physical base
for a virtual projection, which appears to
transform its underlying geometry.

69. Delicate Boundaries (2006) by Christine
Sugrue presents an interaction in which
projected organisms “leave the screen” and
climb onto a viewer’s outstretched arm,
detected by an overhead camera.

70. In Karolina Sobecka’s Wildlife (2006),
a running tiger is projected from a moving
car onto urban surfaces. The tiger’s speed is
proportional to the speed of the car’s wheels,
as determined by a sensor; when the car
stops, the tiger stops also.

Additional Projects
Emily Andersen et al., The Illuminator,
2012–2020, site-specific projection.

AntiVJ (Romain Tardy and Thomas Vaquié),
O (Omicron), 2012, sound and site-specific
projection, Hala Stulecia, Wrocław, Poland.

Chris Baker, Architectural Integration Tests,
2009, online video.

Toni Dove, Mesmer: Secrets of the Human
Frame, 1990, computationally driven slide
installation.

Eric Forman, Perceptio Lucis, 2009, video
projector, software, and painted wood form,
New York.

Benjamin Gaulon and Arjan Westerdiep,
DePong, 2003, projected game, Groningen,
Netherlands.

GMUNK (Bradley Munkowitz), BOX,
September 2013, video, 5:15.

Michael Guidetti, Bounce Room, 2009,
watercolor on canvas with animated digital
projection, Jancar Jones Gallery, Los Angeles.

Andreas Gysin and Sidi Vanetti, Casse, 2006,
projection, sound, and speakers.

YesYesNo, Night Lights, 2011, interactive
light projection, Auckland Ferry Terminal,
Auckland.

Readings
Gerardus Blokdyk, Projection Mapping: A
Complete Guide (n.p.: 5STARCooks, 2018).

Justin Cone, “Building Projection Roundup,”
Motionographer.com, July 24, 2009.

Donato Maniello, Augmented Reality in Public
Spaces: Basic Techniques for Video Mapping
(n.p.: Le Penseur, 2015).

Ali Momeni and Stephanie Sherman, Manual
for Urban Projection (self-pub., Center for
Urban Intervention Research, 2014).

Francesco Murano, Light Works: Experimental
Projection Mapping (Rome: Aracne
Publishing, 2014).

Studio Moniker, The Designer’s Guide to
Overprojection (projection on posters,
presented at Typojanchi: 3rd International
Typography Bienniale, Seoul, South Korea,
August 30–October 11, 2013).

72 Code as Creative Medium

73Assignments

O
ne

-B
ut

to
n

G
am

e

74 Code as Creative Medium

One-Button Game
Designing within tight constraints

Brief
Your challenge is to make a game whose
interface is limited to a single button.

A button has two states: pressed and released.
How can you design a core game mechanic
solely using the changes between these
states? These actions could control movement
(running, jumping, flying), an action (attacking,
transforming), or a change in the environment
(gravity, weather, friction). For multiplayer
games, your system may use one button per
player. You are encouraged to think beyond
making a “runner” game—the most common
one-button game mechanic, in which the
player’s avatar jumps over pits and obstacles.

Learning Objectives
• Design and realize a game within tight

design constraints
• Discuss, differentiate, and appraise the range

of game mechanics possible with a single
binary input

• Develop an aesthetic or narrative treatment
that supports the play experience

Variations
• Keyboard emulators like the Makey-Makey

allow the rapid construction of whimsical
button controllers from household materials
like bananas and Play-Doh. Using a keyboard
emulator, construct a custom game controller
that is part of a piece of clothing, furniture,
or architecture.

• Convert a classic arcade game into a one-button
game by “automating” (eliminating) interactions
that are customarily under control of the player.
For example, Space Invaders uses two sets of
controls: one to move the player’s laser cannon
back and forth, and another to fire at descending
aliens. It can be changed into a one-button game
by making the cannon move back and forth on
an automatic schedule.

• Modify the problem scope so that your game
uses continuously valued data from a single
sensor, such as a slider, knob, photoresistor,
or microphone.

Making It Meaningful
The one-button game belongs to a classic
category of games wherein user interaction
is limited to a single binary input. As the
popularity of Tiny Wings and Flappy Bird
make evident, this category remains more
relevant than ever, particularly in the context
of small mobile devices. Yet today’s bountiful
computational resources tend to encourage a
focus on sumptuous audiovisuals, making it
easy to overlook how strict design constraints
can counterintuitively produce engrossing
experiences. As Andy Nealen, Adam Saltsman,
and Eddy Boxerman have observed, much can
be done with simple inputs, narrow decision
spaces, and minimal graphics, as they help
focus a designer on “the most relevant rules,
mechanics and representations of a system,
while still providing for an intractably large
possibility space.”i

Despite its minimal affordances, a single
button can allow a surprisingly wide range of
expressive interactions—and therefore, game
design strategies—through the manipulation
of timing. The duration of a button press, for
example, can be used to regulate the amount of
“energy” applied to a virtual game object (such
as charging a battery or stretching a slingshot).
A game mechanic may operate by counting how
often a player presses the button within a unit
of time (i.e., taps per second); measuring the
precision of the player’s rhythmic sensibility
(i.e., how accurately they can achieve a pulse of
periodic taps); or quantifying the player’s feel
for timing (whether their button taps are early or
late, relative to another game event). Sequences
of long and short button presses can even be
used to communicate text through Morse code.

The provocative potential of the one-button
game is unleashed when the controller is placed
deliberately in the world and interpreted in new
physical forms. As designers like Kaho Abe,
Kurt Bieg, and Ramsey Nasser show, when
attached to different parts of the body, novel
multiplayer interactions can be choreographed
and agilities tested. Taken together, these
strategies outline ways in which a designer can
savor tight constraints to make compelling and
novel game play.

75Assignments

76 Code as Creative Medium

71 72

73

74

75

76

Captions
71. The popular mobile game Flappy Bird was
released by Dong Nguyen in 2013. Tapping
the screen boosts the flight of a small bird,
keeping it aloft and helping it avoid obstacles
as they scroll by.

72. Artist Rafaël Rozendaal, co-creator of
Finger Battle (2011), writes: “The game is
very simple: two players, tap as fast as you
can, the fastest tapper wins.” Each player
is restricted to tapping in their own zone
(blue or red). If a player taps faster than their
opponent, their zone grows in size—making it
easier to tap the screen, and accelerating the
game to its conclusion.

73. In Major Bueno’s Moon Waltz (2016), a
single-button side-scroller, the player does
not directly control the main character.
Instead, the game’s button performs a
narrative function in a chain of cause and
effect: pressing the button parts the clouds,
which reveals the moon, which causes the
main character to transform into a werewolf,
enabling new modes of attack.

74. Jonathan Rubock’s One Button Nipple Golf
(2016) employs a tap-and-hold interaction
and partial automation to control both the
orientation and strength of the player’s
putt. Before the putt, a rotating indicator
continually orbits around the tee; the player
determines the orientation of their putt from
this indicator by deciding when to press the
button. The strength of the player’s putt is
then regulated by how long they hold the
button down. The golf course is a landscape
of human torsos, in which nipples are the
golf holes.

75. Kaho Abe’s Hit Me! (2011) is a physical,
screenless game in which each player wears
a button on their head. The objective is to tap
your opponent’s button before they tap yours.

76. Moving the button to a different location
on the body, Kurt Bieg and Ramsey Nasser
extend Abe’s core game mechanic with richly
suggestive play. In Sword Fight (2012), each
player sports an Atari-style joystick strapped
to their groin, with which they attempt
to strike their opponent’s action button.
Awkward hilarity ensues.

Additional Projects
Kaho Abe and Ramsey Nasser, Shake it Up!,
2013, two-player physical game.

Atari, Steeplechase, 1975, arcade game.

Stéphane Bura, War and Peace, 2010,
online game.

Peter Calver (Supersoft), Blitz, 1979, video
game for Commodore.

Bill Gates and Neil Konzen, DONKEY.BAS,
1981, video game distributed with the original
IBM PC.

Andreas Illiger, Tiny Wings, 2011, mobile
game.

Kokoromi Collective, Gamma IV Showcase:
One Button Games, 2009, one-button game
competition website.

Konami, Badlands, 1984, laserdisc cowboy-
themed shooter game.

Paolo Pedercini (Molleindustria), Flabby
Physics, 2010, online game.

Adam Saltsman (Atomic), Canabalt, 2009,
video game.

SMG Studio, One More Line, 2015, online
and mobile game.

Phillipp Stollenmayer, Zip-Zap, 2016,
mobile game.

Readings
Barrie Ellis, “Physical Barriers in Video
Games,” OneSwitch.org.uk., accessed April
14, 2020.

Berbank Green, “One Button Games,”
Gamasutra.com, June 2, 2005.

Paolo Pedercini, syllabi for Experimental
Game Design (CMU School of Art, Fall
2010–2020).

Paolo Pedercini, “Two Hundred Fifty
Things a Game Designer Should Know,”
Molleindustria.org, accessed July 20, 2020.

George S. Greene, “Boys Can Have a Carnival
of Fun with This Simply Built High Striker,”
Popular Science (September 1933): 59–60.

Katie Salen and Eric Zimmerman, Rules of
Play: Game Design Fundamentals (Cambridge,
MA: MIT Press, 2005).

Notes
i. Andy Nealen, Adam Saltsman, and
Eddy Boxerman, “Towards Minimalist
Game Design,” in Proceedings of the 6th
International Conference on Foundations of
Digital Games (ACM Digital Library, 2011),
38–45.

77Assignments

B
ot

78 Code as Creative Medium

Bot
Autonomous artistic agent

Brief
Create an autonomous software agent, or “bot,”
that generates posts to an online social media
platform at regular intervals. Your bot might
generate dialogue, stories, recipes, lies, witty
quips, or poems, or it might publish wholly non-
textual media such as images, sounds, melodies,
comic strips, or animated GIFs. Your project
may be a publishing platform, intermittently
sharing content to an audience of subscribers,
or it may operate as a social actor, interacting
directly with other users. It might explore a
particular theme, perform a role, communicate
an emotional disposition, or promote a specific
agenda. Your bot could also work as a filter,
by aggregating, republishing, or reinterpreting
content from other sources. Explore the different
interactions afforded by the API of your chosen
platform. The key is that your machine must
publicly share its media online, and it must be
orchestrated through code.

Some important ground rules apply. Your
program may not perform illegal actions.
Your program should not spread hate speech
(whether purposefully or accidentally), harass
people, or make threats. It is wise for your bot
to identify itself as an automated process. If
you wish your program to interact with real
individuals, those persons must first “opt-
in” by following your bot. If you disobey this
restriction, your project is likely to be short-
lived; you risk having your account blocked or
terminated very quickly.

Learning Objectives
• Design a creative work that uses an API
• Integrate computational techniques for content

generation (or filtering) in a social media context
• Differentiate and appraise the aesthetics of

systems for generating public performances

Variations
• For introductory students: Start by using an

online notification service such as If This Then
That (IFTTT) to automate online interactions
with minimal coding.

• Have your bot reveal something interesting
about the API of its online platform.

• Create a bot that responds to an online data
stream (such as a newspaper) or that presents
items pulled from a cultural archive (such as a
museum collection). This will likely require you
to negotiate another API in addition to that of
your bot’s social media platform.

Making It Meaningful
Online bots interact with humans, serve political
agendas, broadcast real-time data, and share
artistic, literary, and scientific content. Poetic
bot-maker Allison Parrish describes her agents
as “cute robot explorers” sent to probe (and
transmit reports about) unknown territories of
“semantic space.”i For computational artists,
social media platforms offer the key mechanism
by which a bot’s procedurally generated content
can be published to willing subscribers. No
matter how obscure the bot, there is probably an
audience for it.

The use of non-human software agents, once
primarily the domain of computer science
researchers and artists, is now so prevalent
that bots generate a majority of Internet traffic.
Search engines use “spider” bots to index
the web, while malicious “botnets” conduct
coordinated attacks, spread misinformation,
sow distrust, and amplify extreme points of view
on digital platforms. The ability of chatbots to
convincingly simulate conversation, or pass the
“Turing test,” remains fraught, as demonstrated
by the great “bot purges” of 2014–2018. These
purges saw social media platforms suspend
automated accounts and increase regulation in
response to public concern about automated
media manipulation impacting real electoral
processes and political discourse.

From ELIZA to Alexa, chatbots continue
to learn to mimic human communication
through interactions with their users, reviving
questions like: What areas of our lives should
be automated by software? What does it mean
to be human? Bots with AI inspire hope and
anxiety, dual sentiments that are palpable in
fictional depictions like 2001’s HAL 9000 and
Samantha in the movie Her.

79Assignments

80 Code as Creative Medium

77 78

79

80

81

82

Captions
77. Jeff Thompson’s Art Assignment Bot
(2013) generates creative prompts for
thousands of followers.

78. The Ephemerides (2015) Twitter bot
by Allison Parrish publishes pairings of
generated poetry and randomly selected
NASA images.

79. Everest Pipkin and Loren Schmidt’s
Moth Generator (2015) is a Twitter bot that
synthesizes images of imaginary moths,
accompanied by generated nomenclatures
for each specimen. More than 11,000
people have signed up to receive these
“lepidoptera automata.”

80. Reverse OCR (2014) by Darius Kazemi is
a Tumblr bot that selects a random word and
draws semi-random lines until an OCR library
recognizes the resulting image as that word.

81. The Random Darknet Shopper (2014) by
!Mediengruppe Bitnik is an automated online
shopping bot that spends an allowance of
$100 in bitcoins per week on purchases from
the Darknet.

82. CSPAN 5 (2015) by Sam Lavigne is a
YouTube bot that automatically edits videos
from the C-SPAN channel, reducing them to
their most frequent words and phrases.

Additional Projects
Anonymous, Congress Edits, 2014,
Twitter bot.

American Artist, Sandy Speaks, 2017, AI
chat platform.

Ranjit Bhatnagar, Pentametron, 2012,
Twitter bot.

Tega Brain, Post the Met, 2014, Craigslist bot.

James Bridle, Dronestagram, 2012, social
media bots.

George Buckenham, Cheap Bots, Done
Quick!, 2016, bot-making tool.

Kate Compton, Tracery, 2015, generative
text-authoring tool.

Voldemars Dudums, Hungry Birds, 2011,
Twitter bot.

Constant Dullaart, attention.rip, 2017,
Instagram bot.

shawné michaelain holloway, *~ FAUNE ~* :
EDIT FLESH.PNG, 2013, Tumblr bot.

Surya Mattu, NY Post Poetics, 2015,
Twitter bot.

Kyle McDonald, KeyTweeter, 2010,
Twitter bot.

Ramsey Nasser, Top Gun Bot, 2014,
Twitter bot.

Pall Thayer, I Am Still Alive, 2009, Twitter bot.

Thricedotted, How 2 Sext, 2014, Twitter bot.

Jia Zhang, CensusAmericans, 2015,
Twitter bot.

Readings
danah boyd, “What Is the Value of a Bot?,”
Points (blog), datasociety.net, February
25, 2016.

Michael Cook, “A Brief History of the Future
of Twitter Bots,” GamesbyAngelina.org,
updated January 13, 2015.

Madeleine Elish, “On Paying Attention: How
to Think about Bots as Social Actors,” Points
(blog), datasociety.net, February 25, 2016.

Lainna Fader, “A Brief Survey of Journalistic
Twitter Bot Projects,” Points (blog),
datasociety.net, February 26, 2016.

Jad Krulwich and Robert Krulwich, “Talking to
Machines,” Radiolab (podcast), May 30, 2011.

Rhett Jones, “The 10 Best Twitter Bots That
Are Also Net Art,” Animal, January 9, 2015.

Darius Kazemi, “The Bot Scare,” Notes (blog),
tinysubversions.com, December 31, 2019.

Rachael Graham Lussos, “Twitter Bots as
Digital Writing Assignments,” Kairos: A
Journal of Rhetoric, Technology, and Pedagogy
22, no. 2 (Spring 2018), n.p.

Allison Parrish, “Bots: A Definition and
Some Historical Threads,” Points (blog),
datasociety.net, February 24, 2016.

James Pennebaker, “The Secret Life of
Pronouns,” filmed February 2013 in Austin,
TX, TED video, 17:58.

Elizaveta Pritychenko, Twitter Bot
Encyclopedia (self-pub., Post-Digital
Publishing Archive, 2014).

Mark Sample, “A Protest Bot Is a Bot So
Specific You Can’t Mistake It for Bullshit: A

Call for Bots of Conviction,” Medium.com,
updated May 30, 2014.

Saiph Savage, “Activist Bots: Helpful but
Missing Human Love?,” Points (blog),
datasociety.net, November 29, 2015.

Jer Thorp, “Art and the API,” blprnt.blg (blog),
blrpnt.com, August 6, 2013.

Samuel Woolley et al., “How to Think about
Bots,” Points (blog), datasociety.net, February
24, 2016.

Notes
i. Allison Parrish, “Exploring (Semantic)
Space with (Literal) Robots” (lecture, Eyeo
Festival, Minneapolis, MN, June 2015).

81Assignments

C
ol

le
ct

iv
e

M
em

or
y

82 Code as Creative Medium

Collective Memory
Creative crowdsourcing

Brief
Create an online, open system that invites
visitors to collaborate on or contribute to
a collectively produced media object. Your
project should enable its participants to make
changes that persist over time for others to
experience (and potentially, modify). The result
should be a dynamically evolving visual, textual,
sonic, or physical artifact that develops from
a novel interaction between friends, siblings,
collaborators, neighbors, or strangers. Carefully
consider the kinds of actions or authorship you
hope to elicit, and how the interaction design
of your system influences individual (and hence
collective) behavior. Paradoxically, the tightest
constraints often produce the most interesting
results. Can you create the conditions for
unexpected emergent behaviors to arise?

The problem of “bootstrapping” sometimes
arises in crowdsourced endeavors where it
can be challenging to attract the first wave of
participants, particularly if the system does not
become interesting until there is significant
participation. Does your project need an
enlistment strategy?

Learning Objectives
• Differentiate and appraise the aesthetics,

design, and concept of systems that support
collaboration and emergent creative behavior

• Design an interface, balancing constraints and
incentives for participation

• Implement fundamental data structures

Variations
• Consider how (or whether) your system scales.

Would your project survive “going viral”?
• Implement a form of automated “weathering,” in

which your system gradually organizes, alters, or
prunes its participants’ contributions over time.

• Your project may attract trolls, bigots,
spammers, bots, vandals, and other visitors
acting in bad faith. Be prepared to consider the
problem of content moderation (automated or
otherwise). Are your users anonymous, or are
they somehow accountable?

Making It Meaningful
From wasp nests to Wikipedia, principles
of emergence explain how the cumulative
contributions of thousands of independent
agents can produce sophisticated forms. On the
Internet, the art of orchestrating large groups
of people is called “crowdsourcing,” and the
technologies for such information husbandry
offer rich opportunities to explore cybernetic
concepts like feedback, autopoiesis, and the
nuances of collective behavior. The simplest
crowdsourcing rulesets can yield a startling
glimpse of the consciousness of the global hive-
mind, as in Kevan Davis’s Typophile: The Smaller
Picture (2002), or the epic Place experiment
on Reddit (2017). It should surprise no one that
crowdsourcing may also channel our darkest
impulses, as happened with Microsoft’s Tay,
an AI chatbot that developed offensive speech
patterns through conversations with the crowd.

Collectively created artifacts vary considerably.
At one extreme are phenomena, like desire paths
or the Great Pacific Garbage Patch, that arise as
the inadvertent by-products of myriad human
actions. “Memory quilts” and traditional folk
songs thread together deliberate contributions
from many individuals, but are typically
structured according to fixed, widely understood
cultural idioms (grids, rhyme schemes, etc.).
Other collectively authored artifacts aggregate
independent contributions through an
undirected process of accumulation; examples
of such works include cairns, gum walls, “love
padlock” bridges, Yayoi Kusama’s Obliteration
Room installation, and, on the Internet, graffiti
walls like Drawball and SwarmSketch.

Internet artists have enlisted online participants
to collaboratively tend gardens, write poetry,
produce drawings, interpret imagery, annotate
video, and contribute to historical archives. In
the genre of the crowdsourced meta-artwork,
the creator defines browser-based interactions
that scope a user’s creative influence—and then
distributes artistic agency to a large, open, and
often rapidly evolving group. Success depends
on carefully balancing constraints (such as
limiting available “ink,” or whether or not users
are permitted to alter another’s contribution) and
incentives (such as the opportunity to engage
creatively with a favorite song, or participate in a
novel creative activity or political action).

83Assignments

84 Code as Creative Medium

85Assignments

83 84

85

86

87

88

89

90

91

Captions
83. In Exhausting a Crowd (2015), Kyle
McDonald invites online audiences to
annotate a 12-hour video recording of a
public place with their own observations
of the scene. Inspired by Georges Perec’s
1974 experimental literary work An Attempt
at Exhausting a Place in Paris, McDonald
opens up a process of close observation to a
broad public, crowdsourcing the discovery
and preservation of moments that might
otherwise go unnoticed.

84. A cairn is a human-made pile of stones,
often accreted over the course of centuries.
Since prehistoric times, these collaboratively
produced structures have served as
landmarks, trail markers, and memorials.

85. Telegarden (1995) by Ken Goldberg
and Joseph Santarromana is an interactive
networked installation consisting of a garden
and a robotic arm. Online visitors view the
garden via a webcam, and can plant, water,
and tend seedlings by controlling the arm.

86. Roopa Vasudevan’s Sluts across America
(2012) is a compilation of user-submitted
messages advocating for reproductive
freedoms, geolocated and displayed on a
U.S. map.

87. In Dead Drops (2010), Aram Bartholl
creates an offline file-sharing service by
covertly mounting USB storage devices
throughout a city. If a passerby connects their
computer to one of the USB drives, they can
download whatever information prior visitors
have contributed, or upload new files of
their own.

88. Studio Moniker’s Do Not Touch (2013) is
a crowdsourced music video. Visitors to an
interactive web application listen to a song,
during which they receive simple instructions

on how to move their mouse cursor (“Catch
the green dot”). Thus orchestrated, these
cursor movements are recorded and then
played back in sync with the song.

89. Typophile: The Smaller Picture (2002) is
a website by Kevan Davis wherein visitors
are prompted to contribute to the design of a
letterform, such as the letter ’A’. Each visitor’s
creative options are tightly restricted: their
only choice is to decide whether a given pixel,
in a 20x20 grid, should be black or white. The
letterform’s grid is initialized with random
noise. Gradually, as members of the crowd
contribute decisions about individual pixels, a
collectively designed typeface is produced.

90. Place (shown here in detail) was a
1000x1000 pixel collaborative canvas hosted
on Reddit. During a 72-hour period in April
2017, registered users could edit the canvas
by selecting the color of a single pixel from
a 16-color palette. Because each user could
only alter one pixel every five minutes, crowds
developed elaborate methods to collectively
draw images, write messages, create flags,
and overwrite the contributions of others.

91. For the Iyapo Repository (2015), Salome
Asega and Ayodamola Okunseinde
crowdsource speculations on the future
from people of African descent. The
artists take the resultant blueprints for
cultural technological artifacts, realize
them as objects, and acquisition them into
the collection.

Additional Projects
Olivier Auber, Poietic Generator, 1986,
contemplative social network game.

Andrew Badr, Your World of Text, 2009,
collaborative online text space.

Douglas Davis, The World’s First Collaborative
Sentence, 1994, collaborative online text.

Peter Edmunds, SwarmSketch, 2005,
collaborative online digital canvas.

Lee Felsenstein, Mark Szpakowski, and Efrem
Lipkin, Community Memory, 1973, public
computerized bulletin board system.

Miranda July and Harrell Fletcher, Learning to
Love You More, 2002–2009, assignments and
crowdsourced responses.

Agnieszka Kurant, Post-Fordite 2, 2019,
fossilized enamel paint sourced from
shuttered car manufacturing plants.

Yayoi Kusama, The Obliteration Room, 2002,
interactive installation.

Mark Napier, net.flag, 2002, online app for
flag design.

Yoko Ono, Wish Tree, 1996, interactive
installation.

Evan Roth, White Glove Tracking, 2007,
crowdsourced data collection.

Jirō Yoshihara, Please Draw Freely, 1956,
paint and marker on wood, outdoor Gutai Art
Exhibition, Ashiya, Japan.

Readings
Paul Ryan Hiebert, “Crowdsourced Art:
When the Masses Play Nice,” Flavorwire,
April 23, 2010.

Kevin Kelly, “Hive Mind,” in Out of Control:
The New Biology of Machines, Social Systems,
& the Economic World (New York: Basic
Books, 1995).

Ioana Literat, “The Work of Art in the Age
of Mediated Participation: Crowdsourced
Art and Collective Creativity,” International
Journal of Communication 6 (2012):
2962–2984.

Dan Lockton, Delanie Ricketts, Shruti
Chowdhury, and Chang Hee Lee, “Exploring
Qualitative Displays and Interfaces” (paper
presented at CHI ’17: CHI Conference on
Human Factors in Computing Systems,
Denver, CO, May 2017).

Trent Morse, “All Together Now: Artists
and Crowdsourcing,” ARTnews, September
2, 2014.

Manuela Naveau, Crowd and Art: Kunst und
Partizipation im Internet, Image 107 (Bielefeld,
Germany: Transcript Verlag, 2017).

Howard Rheingold, Smart Mobs: The
Next Social Revolution (New York: Basic
Books, 2002).

Clay Shirky, “Wikipedia – An Unplanned
Miracle,” The Guardian, January 14, 2011.

Carol Strickland, “Crowdsourcing: The Art of
a Crowd,” Christian Science Monitor, January
14, 2011.

“When Pixels Collide,” sudoscript.com,
4 April 2017.

86 Code as Creative Medium

87Assignments

E
xp

er
im

en
ta

l C
ha

t

88 Code as Creative Medium

Experimental Chat
Interrogating “togetherness”

Brief
Design a multi-user environment that allows
people in different locations to communicate
with each other in a new way. Your system
could facilitate language-based interactions
like typing, speaking, or reading. Alternatively,
it could convey non-verbal aspects of presence,
such as gestures or breathing, to explore
what Heidegger calls Dasein, or “being there
together.” Carefully consider the agency of
participants in your system, and the timing and
directionality of their messages. Are the users
passive observers, listening to the murmurings
of a crowd, or are they contributors to a grand
conversation? Is communication asynchronous,
wherein a user’s traces are encountered by
others later? Or is it synchronous, allowing for
simultaneous participation in a live event? Is
your system intended for one-to-one, one-to-
many, many-to-one, or many-to-many?

Learning Objectives
• Differentiate, discuss, and appraise modalities of

verbal and non-verbal communication
• Use a server-client model and a library for real-

time networked communication
• Develop, design, and realize a concept for a

social space

Variations
• Think beyond your laptop: consider the

location(s) where your chat system can be
situated, the typical activities people do there,
and the relationships they may have. Is your

system in a bus station? An orchestra pit? A
bedroom? A helmet? Are your participants
mutual strangers? Collaborators? Lovers?
Parents and their infants?

• Create an environment in which networked users
“feel” each other’s presence in a novel way.i

• Explore the senses. How might your users
communicate with colors? Vibrations? Odors?

• Consider asymmetries of time, scale, agency,
or ability. Perhaps one user is limited to
communicating with a single fingertip, while the
other must use their entire body.

• Create a multiuser environment in which one
of the “users” is a crowd (such as a Mechanical
Turk workgroup), or an artificial intelligence,
such as an ELIZA chatbot, a translation service,
Apple Siri, or an automated online assistant.

• Develop a MUD (Multi-User Dungeon), a
text-based, multiplayer virtual world. Design a
fixed lexicon and syntax of commands for your
players, and a task or problem that your players
must solve using this vocabulary.

• Use your chat system in a live public
performance that incorporates scripted or
improvised contributions from both local and
remote participants.

Making It Meaningful
Electronic networks provide powerful ways of
connecting people who are physically separate.
The creation of communication tools (and virtual
social spaces) has characterized networked
computation since its inception, beginning
with the CTSS instant messaging feature

(1961), AUTODIN email service (1962), Douglas
Engelbart’s collaborative real-time text editor
(1968), the Talkomatic conferencing system
(1973), and multiplayer games like Colossal Cave
Adventure (1975).

Computational artists and designers have
aimed to expand telecommunication beyond
the exchange of character symbols into an
experience that employs the full sensory and
expressive capabilities of our bodies. Myron
Krueger’s Videoplace (1974–1990) and Kit
Galloway and Sherrie Rabinowitz’s Hole in
Space (1980) were early systems that took
different approaches to full-body telepresence.
Today’s VR and teledildonics are obvious (and
increasingly commercial) extensions of this.

Counterintuitively, some of the most compelling
communication systems use strictly limited
symbol-sets or rigid constraints on bandwidth.
(Consider the telephone, or micro-blogging tools
like Twitter.) In the absence of high-resolution
sensory information, our imaginations fill in
the rest.

89Assignments

90 Code as Creative Medium

91Assignments

92 93

94

95

96

97 98

99

Captions
92. Hole in Space (1980), a “communication
sculpture” by Kit Galloway and Sherrie
Rabinowitz, used live two-way video to
connect street-level pedestrians in Los
Angeles and New York City.

93. In The Trace (1995) by Rafael Lozano-
Hemmer, a participant encounters the
moving, ghostlike, real-time “presence” of
another person, represented by the glowing
intersection of a pair of light-beams. The
other person is located in an identical but
separate room—and perceives the first
participant in the same way.

94. the space between us (2015) by David
Horvitz is a mobile app that connects two
people’s phones. Once connected, the app
displays the distance to and direction of the
other person.

95. Scott Snibbe’s Motion Phone (1995)
is a collaborative, multiplayer drawing
environment in which participants draw
animated forms onto a shared canvas.

96. Poop Chat Pro (2016) by Maddy Varner
is both a real-time chat space and an
asynchronous graffiti wall, in which messages
are deposited as quivering animations for
others to find later.

97. Meatspace (2013) by Jen Fong-Adwent
and Soledad Penadés is an ephemeral
conversation space in which participants’
written messages are accompanied by
animated GIF loops, instantaneously
captured from their webcams.

98. The Online Museum of Multiplayer Art
(2020), a virtual wing of Paolo Pedercini’s
LIKELIKE neo-arcade, features “playful
environments that interrogate our notions of
mediated sociality and digital embodiment.”

Among the museum’s many conceptually
oriented chat installations is the “Censorship
Room” in which “each word can only be
uttered once and never again.”

99. American Artist’s installation Sandy
Speaks (2017) explores the possibilities of
chat from beyond the grave. Using a custom-
trained AI chatbot, this project places a visitor
in conversation with the real words of Sandra
Bland, who discussed racism and police
brutality in an extensive series of YouTube
videos just weeks before her own death in
police custody.

Additional Projects
Olivier Auber, Poietic Generator, 1986,
contemplative social network game.

Wafaa Bilal, Domestic Tension, 2007,
interactive video installation.

Black Socialists of America, BSA’s Clapback
Chest, 2019, custom search engine.

Tega Brain and Sam Lavigne, Smell Dating,
2016, smell-based dating service.

Jonah Brucker-Cohen, BumpList, 2003,
email list.

Dries Depoorter and David Surprenant, Die
With Me, 2018, mobile chat app.

Dinahmoe, _plink, 2011, multiplayer online
instrument.

Exonemo, The Internet Bedroom, 2015,
online event.

Zach Gage, Can We Talk?, 2011, chat
program.

Ken Goldberg and Joseph Santarromana,
Telegarden, 1995, collaborative garden
with industrial robot arm, Ars Electronica
Museum, Linz, Austria.

Max Hawkins, Call in the Night, 2013, phone
call service.

Miranda July, Somebody, 2014, messaging
service.

Darius Kazemi, Dolphin Town, 2017, dolphin-
inspired social network.

Myron Krueger, Videoplace, 1974–1990,
multiuser interactive installation.

Sam Lavigne, Joshua Cohen, Adrian Chen,
and Alix Rule, PCKWCK, 2015, digital novel
written in real time.

John Lewis, Intralocutor, 2006, voice-
activated installation.

Jillian Mayer, The Sleep Site, A Place for
Online Dreaming, 2013, website.

Lauren McCarthy, Social Turkers, 2013,
system for crowdsourced relationship
feedback.

Kyle McDonald, Exhausting a Crowd, 2015,
video with crowdsourced annotations.

László Moholy-Nagy, Telephone Picture, 1923,
porcelain enamel on steel.

Nontsikelelo Mutiti and Julia Novitch,
Braiding Braiding, 2015, experimental
publishing project.

Jason Rohrer, Sleep Is Death (Geisterfahrer),
2010, two-player storytelling game.

Paul Sermon, Telematic Dreaming, 1992, live
telematic video installation.

Sokpop Collective, sok-worlds, 2020,
multiplayer collage.

Tale of Tales, The Endless Forest, 2005,
multiplayer online role-playing game.

TenthBit Inc., ThumbKiss (renamed as the
Couple app), 2013, mobile messaging app.

Jingwen Zhu, Real Me, 2015, chat app with
biometric sensors.

92 Code as Creative Medium

Readings
Roy Ascott, Telematic Embrace: Visionary
Theories of Art, Technology, and
Consciousness, ed. Edward A. Shanken
(Berkeley: University of California
Press, 2007).

Lauren McCarthy, syllabus for Conversation
and Computation (NYU, Spring 2015).

Joanne McNeil, “Anonymity,” in Lurking:
How a Person Became a User (New York:
Macmillan, 2020).

Joana Moll and Andrea Noni, Critical
Interfaces Toolbox (2016), crit.hangar.org,
accessed July 20, 2020.

Kris Paulsen, Here/There: Telepresence,
Touch, and Art at the Interface. (Cambridge,
MA: MIT Press, 2017).

Casey Reas, “Exercises,” syllabus for
Interactive Environments (UCLA D|MA,
Winter 2004).

Notes
i. This variation is adapted from Paolo
Pedercini, “Remote Play / Remote Work,”
syllabus for Experimental Game Design
(CMU School of Art, Fall 2020).

93Assignments

B
ro

w
se

r
E

xt
en

si
on

94 Code as Creative Medium

Browser Extension
Lens for the Internet

Brief
A browser extension is a software add-on that
alters the behavior of a web browser application.
It can serve as a jumping-off point for creative
intervention in the online realm. Extensions
can change the appearance of specific online
content, add additional information layers,
redirect a viewer to different URLs, or change
browser behaviors. Popular extensions serve
to block ads, obscure the user’s identity,
circumvent censorship, fact-check politicians,
and provide dictionary definitions.

In this assignment, you are asked to design
and build a browser extension that alters the
appearance of (a part of) the Internet, or that
augments, defamiliarizes, or estranges a viewer’s
browsing experience in a poetic or critical way.
Publish your extension to a public platform,
such as the Chrome Web Store or the Firefox
Add-ons site.

Learning Objectives
• Review protocols for website structure

and display
• Identify and creatively experiment with

Internet browser functionality and APIs
• Develop a creative browser-based intervention

Variations
• For introductory students: Begin by modifying

website code in the console of the browser. The
styling and content of a page can be temporarily
edited by changing the CSS or HTML of a page

directly or algorithmically using JavaScript. This
exercise introduces students to the console, and
to the underlying structure of a website; it can
later scaffold the creation of their extension.

• Focus on one specific intervention, such as
a text modification, a word or image find-
and-replace, a style-based CSS change, or a
content augmentation in which an extra layer of
information is added to websites.

• Incorporate a regular expression.
• Make an extension that augments the Web

through the use of data from an external online
API or database.

• Build a plugin that incorporates multiuser
functionality, allowing its users to become
aware of (or interact with) others using the
same extension. This may require the use of
WebSockets.

Making It Meaningful
As a window mediates a view of the physical
world, the browser mediates the online world of
the Internet. Altering this quotidian equipment
with a custom extension is a key opportunity for
creative play and disruption at both the system
level and the content level. Doing so requires
direct engagement with the infrastructure
and protocols of the browser, a favorite topic
of “software studies” scholars like Alexander
Galloway, Matthew Fuller, and Wendy Hui Kyong
Chun, who aim to lay bare the means by which
the Web is constructed and how it shapes our
experience of the world.

Some experimental extensions that manipulate
the display of everyday content build on ideas
from the history of conceptual art, such as the
Situationist strategies of defamiliarization and
détournement, which estrange the mundane
and enhance perception of the familiar.
Browser extensions can also be vehicles for
culture jamming, activism, critical design, and
parody, by explicating and revealing otherwise
obscure relationships, or by calling attention
to or strategically editing political doubletalk,
newspeak, dog-whistles, and spin.

Releasing tools can be a form of critical and
contextual creative practice. Outlets for the
publication of browser extensions, like the
Chrome Web Store or the Firefox Add-ons site,
powerfully amplify the author’s ability to enlist
the participation of the public in shaping new
power dynamics. That said, these spaces are
tightly controlled sandboxes whose terms of
service are ultimately aligned with their owners’
business model. Projects that challenge the
terms of their gatekeepers, such as AdNauseam
(which falsifies advertising engagement), may be
removed or disabled.

95Assignments

96 Code as Creative Medium

100 101

102

103

104

Captions
100. Melanie Hoff’s Decodelia (2016) uses
principles of color theory to transform the
way a web browser renders pages, making
their content legible only to those wearing
red-tinted glasses.

101. Jonas Lund’s We See in Every Direction
(2013) connects all of its concurrent users in
a collaborative browsing experience.

102. Steve Lambert’s Add Art (2008) plugin
for the Firefox browser automatically replaces
online advertisements with art.

103. Newstweek (2011) by Julian Oliver and
Danja Vasiliev is a custom Internet router
that enables the artists to alter how news
websites appear to other people on their WiFi
network.

104. Us+ (2013) by Lauren McCarthy and Kyle
Mcdonald is a dystopian add-on for Google’s
video chat software. Using facial analysis,
speech-to-text, and natural language
processing, the Us+ software analyzes the
users’ conversation and attempts to offer
suggestions for improving their interaction.

Additional Projects
Todd Anderson, Hitchhiker, 2020, browser
extension for live performance.

American Artist, Looted, 2020, website
intervention.

BookIndy, BookIndy: Browse Amazon, Buy
Local, 2015, browser extension.

Allison Burtch, Internet Illuminator, 2014,
browser extension.

Brian House, Tanglr, 2013, browser extension.

Daniel C. Howe, Helen Nissenbaum, and
Vincent Toubiana, TrackMeNot, 2006,
browser extension.

Daniel C. Howe, Helen Nissenbaum, and
Mushon Zer-Aviv, AdNauseam, 2014,
browser extension.

Darius Kazemi, Ethical Ad Blocker, 2015,
browser extension.

Surya Mattu and Kashmir Hill, People You
May Know Inspector, 2018, app.

Joanne McNeil, Emotional Labor, 2015,
browser extension.

Dan Phiffer and Mushon Zer-Aviv, ShiftSpace,
2007, browser extension.

Radical Software Group, Carnivore, 2001,
Processing library.

Sara Rothberg, Scroll-o-meter, 2015,
browser extension.

Rafaël Rozendaal, Abstract Browsing, 2014,
browser extension.

Joel Simon, FB Graffiti, 2014, browser
extension.

Sunlight Foundation, Influence Explorer,
2013, browser extension.

The Yes Men et al., The New York Times
Special Edition, November 2008, website.

Readings
Guy Debord and Gil J. Wolman, “A User’s
Guide to Détournement,” trans. Ken Knabb,
Les Lèvres Nues no. 8 (May 1956).

Alexander Galloway, “Protocol: How Control
Exists after Decentralization,” Rethinking
Marxism 13, nos. 3–4 (Fall–Winter 2001):
81–88.

Joana Moll and Andrea Noni, Critical
Interfaces Toolbox (2016), crit.hangar.org,
accessed July 20, 2020.

Rhizome.org, “Net Art Anthology,” accessed
April 11, 2019.

Aja Romano, “How Your Web Browser Affects
Your Online Reality, Explained in One Image,”
Vox, May 3, 2018.

97Assignments

C
re

at
iv

e
C

ry
pt

og
ra

ph
y

98 Code as Creative Medium

Creative Cryptography
Poetic encodings

Brief
Create a digital system that encodes a message
into a media object, and also provides a means
of decoding it. Your system should be designed
to hide information in plain sight—within
images, text, video, sound, or physical forms.
Think carefully about the specific information
your system is designed to encode, and the
significance of the relationship between this
information and the medium that contains it. You
may choose to encode text, data, code, images,
music, or other information of your choosing.
Present one or more examples of your system
in use. This assignment can be tailored to focus
on steganography (the act of hiding a message
in another medium) or cryptography (the act of
encoding a message).

Learning Objectives
• Review common steganographic and

cryptographic techniques
• Apply methods for working with data like

compression, encoding, and decoding
• Explore conceptual and poetic possibilities

of encoding and translation

Variations
• Add layers of encryption into your system for

added security or poetry.
• Consider different constraints that might

determine the encoding technique you develop.
For example, if your means of transmission
is extremely low bandwidth (as was the case
when Morse code was developed), your system

will be shaped by this parameter. The encoding
method could also constrain your message to be
perceived in one sensory domain (e.g., hearing,
sight, or touch) as is the case with Braille or
sign languages.

Making It Meaningful
The advent of the written word created a need
for secure communications, both for those
in power and those who would oppose them.
This need for secure messaging has long
inspired techniques of cryptography, defined
as the encoding of messages. Some historic
cryptographic approaches rely on the use of
pre-computational devices like the decoding
wheel, the Polybius square, and the Enigma
machine, while others use simple ciphers
like the pigpen cipher, Morse code, Braille, or
ROT13. For children, there can be a wholesome
joy in exchanging secret messages with one’s
friends, and a thrill in the effort of unlocking and
revealing them.

Steganography is the special cryptographic
technique of concealing information within
another media format. Early cryptographers
like Sir Francis Bacon and William Friedman
were fond of steganography, building systems
to hide messages in music scores, photographs,
and even flower arrangements. Digital
technologies offer many possibilities for creative
steganography. Unused pixels or bytes in files
can be filled with invisible information, data can
be transcoded into different media, and (as with

acrostics) messages can be distributed across
huge volumes of online communications.

The 2013 Snowden revelations confirmed
that the US government was recording the
online communications of the American
public, and produced a collective realization
that unencrypted communications across
digital networks are inherently insecure.
On the Internet, it is impossible to know if
communications are intercepted, making
the development of practical and reliable
cryptographic technologies an ongoing
urgent challenge.

99Assignments

100 Code as Creative Medium

101Assignments

105 106 107

108

109

110

111

112

Captions
105. Amy Suo Wu’s Thunderclap (2017)
employs steganography to distribute the
suppressed work of Chinese anarcho-
feminist He-Yin Zhen (1886–1920) through
the medium of clothing accessories. The work
co-opts shanzhai fashion (a style featuring
nonsense English), together with QR codes,
as a covert system to publish subversive
writings for a Chinese context.

106. A botanical drawing of a flower by
William and Elizebeth Friedman (1916) uses
a bilateral cipher invented by Francis Bacon
to encode “BACON” in the roots and the
names of Elizabethan authors and books in
the leaves.

107. Maddy Varner’s KARDASHIAN KRYPT
(2014) is a steganographic Chrome extension
that covertly encodes messages into (and
decodes messages from) photographs of Kim
Kardashian. The low-order bits of the image
shown here contain text from “A Room of
One’s Own” by Virginia Woolf.

108. Block Bills (2017) by Matthias Dörfelt
(Moka) is a collection of 64 banknote designs
generated from the Bitcoin blockchain.

109. In Disarming Corruptor, Matthew
Plummer-Fernández presents a reversible
algorithm for corrupting 3D CAD files.
The artist’s software twists 3D meshes
into illegible configurations, helping users
circumvent surveillance and other limitations
on file-sharing.

110. Biopresence (2005) by Shiho Fukuhara
and Georg Tremmel, a collaboration with
scientist Joe Davis, uses Davis’s DNA
Manifold algorithm to transcode human DNA
into the DNA of a tree.

111. The Talking Popcorn installation by Nina
Katchadourian (2001) uses a Morse code
decoder to interpret messages “spoken” by a
popcorn machine.

112. Each copy of Notepad (2007) by Matt
Kenyon and Douglas Easterly resembles a
standard yellow legal pad. The ruled lines
on its pages, however, actually consist
of microprinted text with the full names,
dates, and locations of each Iraqi civilian
death on record from the first three years
of the Iraq War. One hundred copies of
Notepad were covertly distributed to US
senators and representatives, to help ensure
that the names of Iraqi civilians would be
memorialized in official US archives.

Additional Projects
Anonymous, Genecoin, 2014, system for
encoding human DNA in Bitcoin.

Aram Bartholl, Keepalive, 2015, fire-
powered network.

Liat Berdugo, Sam Kronick, Ben Lotan, and
Tara Shi, Encoded Forest, 2016, passwords
stored in tree-planting patterns.

Ingrid Burrington, Secret Device for Remote
Locations, 2011, solar-powered Morse
code message.

“Ciphers, Codes, & Steganography,” 2014,
Folger Shakespeare Library exhibition.

Cryptoart Publishers, Cryptoart, 2020,
system for storing Bitcoin in physical art.

Heather Dewey-Hagborg, How Do You See
Me?, 2019, self-portraits generated via
adversarial processes.

Henry Fountain, “Hiding Secret Messages
Within Human Code,” The New York Times,
June 22, 1999.

Eduardo Kac, Genesis, 1999, biblical passage
encoded in DNA.

Sam Lavigne, Aaron Cantu, and Brian Clifton,
You Can Encrypt Your Face, 2017, face masks.

Lindsay Maizland, “Britney Spears’s
Instagram Is Secretly Being Used by Russian
Hackers,” Vox, June 8, 2017.

Julian Oliver, The Orchid Project, 2015,
photographs with encoded firmware.

Everest Pipkin, Ladder, 2019, encoded poem.

Readings
Florian Cramer, Hiding in Plain Sight: Amy Suo
Wu’s The Kandinsky Collective (Ljubljana,
Slovenia: Aksioma Institute for Contemporary
Art, 2017), e-brochure.

Manmohan Kaur, “Cryptography as a
Pedagogical Tool,” Primus 18, no. 2 (2008):
198–206.

Neal Koblitz, “Cryptography as a Teaching
Tool,” Cryptologia 21, no. 4 (1997): 317–326.

Susan Kuchera, “The Weavers and Their
Information Webs: Steganography in the
Textile Arts,” Ada: A Journal of Gender, New
Media, and Technology 13 (May 2018).

Shannon Mattern, “Encrypted Repositories:
Techniques of Secret Storage, From Desks to
Databases,” Amodern 9 (April 2020).

Jussi Parikka, “Hidden in Plain Sight:
The Steganographic Image,” unthinking.
photography, February 2017.

Charles Petzold, Code: The Hidden Language
of Computer Hardware and Software
(Hoboken, NJ: Microsoft Press, 2000).

Phillip Rogaway, “The Moral Character of
Cryptographic Work” (paper presented at
Asiacrypt 2015, Auckland, NZ, December
2015).

Simon Singh, “Chamber Guide,” The Black
Chamber (website), accessed April 12, 2020.

Hito Steyerl, “A Sea of Data: Apophenia and
Pattern (Mis-) Recognition,” e-flux Journal
72 (2016).

102 Code as Creative Medium

103Assignments

Vo
ic

e
M

ac
hi

ne

104 Code as Creative Medium

Voice Machine
Spoken word and voice play

Brief
Create an interactive chatbot, eccentric virtual
character, or spoken word game centered around
computing with speech input and/or speech
output. For example, you might make a rhyming
game or memory challenge; a voice-controlled
book; a voice-controlled painting tool; a text
adventure; or an oracular interlocutor (think:
Monty Python’s Keeper of the Bridge of Death).
Consider the creative affordances of using
a tightly restricted vocabulary as well as the
dramatic potential of rhythm, intonation, and
volume of speech. Keep in mind that speech
recognition is error-prone, so find ways to
embrace the lag and the glitches—at least, for
another couple of years. Graphics are optional.

Learning Objectives
• Discuss and explore the expressive possibilities

of working with voice and language as a
creative medium

• Apply a toolkit for speech recognition and/or
speech synthesis

• Design, advance, and execute a concept for a
creative work with a voice interface

Variations
• Add speech interactions to an appliance or

everyday object. What if your toaster could talk?
• Recall your favorite road-trip word games.

Create a competitive, multiplayer speech game
in which the computer is the referee.

• Appropriate or subvert a commercial voice
assistant as a readymade for a performance.

• Take inspiration from the ways in which pets and
babies use speech—often inferring meaning from
the tone or prosody of a voice, rather than the
words that are spoken. For example, you might
make an interactive babbling machine, or a virtual
pet that responds to your intonation.

Making It Meaningful
The capacity to speak has long been perceived
as a sign of intelligence. For this reason,
machines that speak can seem uncanny or even
supernatural, as they decouple ancient bindings
between voice, living matter, and intelligence.
In the field of interaction design, voice interfaces
are thought to make technologies more intuitive
and accessible than their visual or typographic
counterparts—but such anthropomorphized
machines do this at the expense of our
ability to accurately estimate how much they
actually “understand.”

In a conversation, information is transmitted and
received on multiple registers—in not only what
is said, but also how it is delivered, and by whom.
We have exquisitely tuned capacities for inferring
contextual information like emotion, gender,
age, health, and socioeconomic status from a
speaking voice. Intonation, rhythm, pace, and
rhyme are also used to create drama, suspense,
sarcasm, and humor. When creating new
experiences through speech, simple operations
may be the most generative. For example, a vast
range of meanings can arise just from altering the
emphasis of words in a sentence.

Speech has a key paralinguistic social role.
Through chit-chat and banter we establish trust,
build relations, and create intimacy. Wordplay,
punnery, and other playful verbal exchanges
create a protected space for this social activity
by exploiting ambiguities in the rules of language
itself. Culture is embedded and propagated in
the protocols of knock-knock jokes, call-and-
response songs, and once-upon-a-time fairy
tales. These rule-based media lend themselves
well to creative manipulation with code. Some
potentially helpful tools to algorithmically
generate speech include context-free grammars,
Markov chains, recurrent neural nets (RNN),
and long short-term memory (LSTM) systems.
Note that some commercial speech analysis tools
transmit the users’ voice data to the cloud, raising
issues of data ownership and privacy.

105Assignments

106 Code as Creative Medium

107Assignments

113 114

115

116

117

118

119

120

121

Captions
113. Lynn Hershman Leeson’s DiNA, Artificial
Intelligent Agent Installation (2002–2004)
is an animated, artificially intelligent female
character with speech recognition and
expressive facial gestures. DiNA converses
with gallery guests, generating answers
to questions and becoming “increasingly
intelligent through interaction.”

114. In Conversations with Bina48 (2014),
Stephanie Dinkins performs improvised
conversations about algorithmic bias with
BINA48, a chatbot-enabled face robot.
BINA48 was commissioned by entrepreneur
Martine Rothblatt, and constructed by
roboticist David Hanson, to resemble
Rothblatt’s wife Bina.

115. Hey Robot (2019) by Everybody
House Games is a game in which teams
compete to make a smart home assistant
(such as Amazon Alexa or Google Home)
say specific words.

116. In David Rokeby’s The Giver of Names
(1991–1997), a camera detects objects placed
on a pedestal by members of the audience.
A computerized voice then describes what
it sees—with strange, uncanny, and often
poetic results.

117. When Things Talk Back (2018), by Roi
Lev and Anastasis Germanidis, is a mobile
AR app that gives voice to everyday objects.
The software automatically identifies objects
observed by the system’s camera, and
anthropomorphizes them with AR overlays
of simple faces. It then uses ConceptNet, a
freely available semantic network, to retrieve
information about the objects and their
possible interrelationships. The app uses
this information to generate humorous and
sometimes poignant conversations between
the objects in the scene.

118. David Lublin’s Game of Phones (2012)
is “the children’s game of telephone, played
by telephone.” Players receive a phone call
and hear a prerecorded message left by the
previous player; they are then prompted to re-
record what they recall hearing for the next
person in the queue. After a week, the entire
chain of messages is published online.

119. Neil Thapen’s playful Pink Trombone
(2017) is an interactive articulatory speech
synthesizer for “bare-handed speech
synthesis.” Using a richly instrumented
simulation of the human vocal tract, the
project enables a wide range of vocal
noisemaking in the browser.

120. Kelly Dobson’s Blendie (2003–2004) is a
1950s Osterizer blender, adapted to respond
empathetically to a user’s voice. A person
induces the blender to spin by vocalizing.
Blendie then mechanically mimics the
person’s pitch and power level, from a low
growl to a screaming howl.

121. In Nicole He’s speech-driven forensics
game, ENHANCE.COMPUTER (2018), players
yell out commands like “Enhance!”—living
out a science-fiction fantasy of infinitely
zoomable images.

Additional Projects
Tim Anderson, Marc Blank, Bruce Daniels,
and Dave Lebling, Zork, 1977–1979,
interactive text-based computer game.

Isaac Blankensmith with Smooth Technology,
Paper Signals, 2017, system for making voice-
controlled paper objects.

Mike Bodge, Meme Buddy, 2017, voice-driven
app for generating memes.

Stephanie Dinkins, Not The Only One,
2017–2019, voice-driven sculpture trained on
oral histories.

Homer Dudley, The Voder, 1939, device to
electronically synthesize human speech.

Ken Feingold, If/Then, 2001, sculptural
installation with generated dialogue.

Sidney Fels and Geoff Hinton, Glove Talk
II, 1998, neural network-driven interface
translating gesture to speech.

Wesley Goatly, Chthonic Rites, 2020,
narrative installation with Alexa and Siri.

Suzanne Kite, Íŋyaŋ Iyé (Telling Rock), 2019,
voice-activated installation.

Jürg Lehni, Apple Talk, 2002–2007, computer
interaction via text to speech and voice
recognition software.

Golan Levin and Zach Lieberman, Hidden
Worlds of Noise and Voice, 2002, sound-
activated augmented reality installation, Ars
Electronica Futurelab, Linz.

Golan Levin and Zach Lieberman with
Jaap Blonk and Joan La Barbara, Messa di
Voce, 2003, voice-driven performance
with projection.

Rafael Lozano-Hemmer, Voice Tunnel, 2013,
large-scale interactive installation in the Park
Avenue Tunnel, New York City.

Lauren McCarthy, Conversacube, 2010,
interactive conversation-steering devices.

Lauren McCarthy, LAUREN, 2017, smart
home performance.

Ben Rubin and Mark Hansen, Listening Post,
2002, installation displaying and voicing real-
time chatroom utterances.

Harpreet Sareen, Project Oasis, 2018,
interactive weather visualization and self-
sustaining plant ecosystem.

Superflux, Our Friends Electric, 2017, film.

Joseph Weizenbaum, ELIZA, 1964, natural
language processing program.

108 Code as Creative Medium

Readings
Zed Adams and Shannon Mattern, “April 2:
Contemporary Vocal Interfaces,” readings
from Thinking through Interfaces (The New
School, Spring 2019).

Takayuki Arai et al., “Hands-On Speech
Science Exhibition for Children at a Science
Museum” (paper presented at WOCCI 2012,
Portland, OR, September 2012).

Melissa Brinks, “The Weird and Wonderful
World of Nicole He’s Technological Art,”
Forbes, October 29, 2018.

Geoff Cox and Christopher Alex McLean,
“Vocable Code,” in Speaking Code: Coding
as Aesthetic and Political Expression
(Cambridge, MA: MIT Press, 2013), 18–38.

Stephanie Dinkins, “Five Artificial Intelligence
Insiders in Their Own Words,” New York
Times, October 19, 2018.

Andrea L. Guzman, “Voices in and of the
Machine: Source Orientation toward Mobile
Virtual Assistants,” Computers in Human
Behavior 90 (2019): 343–350.

Nicole He, “Fifteen Unconventional Uses of
Voice Technology,” Medium.com, November
26, 2018.

Nicole He, “Talking to Computers” (lecture,
awwwards conference, New York, NY,
November 28, 2018).

Halcyon M. Lawrence, “Inauthentically
Speaking: Speech Technology, Accent
Bias and Digital Imperialism” (lecture,
SIGCIS Command Lines: Software, Power
& Performance, Mountain View, CA, March
2017), video, 1:26–17:16.

Halcyon M. Lawrence and Lauren Neefe,
“When I Talk to Siri,” TechStyle: Flash
Readings 4 (podcast), September 6, 2017,
10:14.

Shannon Mattern, “Urban Auscultation; or,
Perceiving the Action of the Heart,” Places
Journal, April 2020.

Mara Mills, “Media and Prosthesis: The
Vocoder, the Artificial Larynx, and the History
of Signal Processing,” Qui Parle: Critical
Humanities and Social Sciences 21, no. 1
(2012): 107–149.

Danielle Van Jaarsveld and Winifred Poster,
“Call Centers: Emotional Labor over the
Phone,” in Emotional Labor in the 21st
Century: Diverse Perspectives on Emotion
Regulation at Work, ed. Alicia A. Grandey,
James M. Diefendorff, and Deborah E. Rupp
(New York: Routledge, 2012): 153–73.

“Vocal Vowels,” Exploratorium Online
Exhibits, accessed April 14, 2020.

Adelheid Voshkul, “Humans, Machines, and
Conversations: An Ethnographic Study of the
Making of Automatic Speech Recognition
Technologies,” Social Studies of Science 34,
no. 3 (2004).

109Assignments

M
ea

su
rin

g
D

ev
ic

e

110 Code as Creative Medium

Measuring Device
Sensing as a critical and creative act

Brief
Create a machine that asks a question of the
world. Your machine should either measure
something interesting, measure something
in an interesting way, or create an interesting
provocation by bringing an uncommon
measurement to our attention. The focus here is
on the selection and collection of intriguing data
(using a microcontroller and a sensor), rather than
on the production of an attractive interpretation
or visualization. What overlooked dynamics or
invisible rhythms can you discover?

Your project’s location is critically important: the
situation of your device will affect who encounters
it, how it is perceived, and the meanings it evokes.
It’s up to you whether your device measures
human activity or the activity of something else
in the environment (cars, animals, lights, doors,
etc.) Consider if you are measuring ambient,
incidental, or deliberate activity, and whether or
not your device is passive or actively used. Be sure
to make a video documenting your measurement
device at the data collection point. Although
you may use any sensor you like, remember
that even a humble switch is a sensor—and that
some switches, like tilt-switches, can measure
inadvertent movements in the world. Likewise,
having a proximity sensor doesn’t mean you have
to measure proximity. Instead, you might measure
the amount of time that something is proximal to
the sensor (recording seconds, not centimeters).
Or perhaps you might count the number of times
that something has come close to the sensor.

Sometimes, student electronics projects can
look suspicious. If you install your device in
a public place, be sure to secure necessary
permissions (such as from your campus safety
officer), and attach a small sign to your device
with appropriate information.

Learning Objectives
• Review and critique methods for collecting data
• Experiment with social, performative, and

sculptural modes of data presentation
• Assemble and install sensor hardware

Variations
• Restrict data collection to a specific site, such as

the classroom or a nearby park.
• Provide students with a screen or other display,

such as a multi-digit 7-segment LED, so they
can represent their sensor readings at the site of
data collection—creating the potential for public
interaction and additional poignance.

Making It Meaningful
Census historian James C. Scott points out
that measurement is a political act. Artists like
Natalie Jeremijenko collect measurements in
order to prompt evidence-driven discussion;
others, like Mimi Onuoha, point out that what is
not measured is equally revealing of a culture’s
biases and indifferences (the study of which is
called agnotology). In the weird world of quantum
physics, the term “observer effect” refers to the
idea that the very act of measurement changes
the subject being measured. Measurement, or the

collection of data, alters the world and the way
we see it.

Data collection has become a key practice across
many fields. “Citizen science” is an educational
and political movement that enlists everyday
people in scientific activities and often focuses
on monitoring local environmental conditions
through distributed DIY sensing. For example, in
the aftermath of the Fukushima disaster, radiation
sensors were distributed to a concerned public,
who transmitted readings to a central server.

Scholars Catherine D’Ignazio and Lauren
Klein outline ways to responsibly work with
data, taking philosophical ideas from feminist
thought and applying them to data collection
and visualization practices. The principles of
feminist data visualization include acknowledging
that data represents an incomplete perspective;
emphasizing the context and the situation in
which data was collected; and providing a way for
those represented in the data to respond to it.

There is often something absurd, poignant, or
whimsically futile about the act of measurement
—an attempt to reduce an infinitely complex
experience to a handful of numbers. In the
arts, measurement can explicitly remind us
that our understanding of reality is only ever an
approximation.

111Assignments

112 Code as Creative Medium

113Assignments

122 123

124

125

126

127

128

Captions
122. Presented as a device for measuring the
hypothetical “Despondency Index” of a given
locale, Natalie Jeremijenko and Kate Rich’s
Suicide Box (1996) nevertheless records very
real data regarding suicide jumpers from the
Golden Gate Bridge.

123. The Deep Sweep (2015) by the Critical
Engineering Working Group is an aerospace
probe that scans the otherwise out-of-reach
signal space between land and stratosphere.

124. Maddy Varner’s This or That (2013), a
“DIY voting poster,” is a student project made
from paper-mounted electronics. A passerby
taps sticky notes to vote between two options
(e.g., “cats” versus “dogs”) proposed by
other strangers.

125. Michelle Ma’s Revolving Games (2013),
another student project, measures the speed
of a revolving door with an accelerometer,
then displays the high score on an LED. Ma’s
game encourages risk-taking in an otherwise
quotidian setting.

126. Catherine D’Ignazio’s Babbling Brook
(2014) is a red networked flower sculpture
containing water quality sensors. The flower
is installed outdoors in a creek or stream and
audibly reports its data in the form of bad
jokes to anyone listening.

127. In Picture Sky (2015), Karolina Sobecka
and Christopher Baker coordinate groups of
people to take photographs of the sky at the
same moment that a satellite captures an
image from above.

128. Library of Missing Datasets (2016) by
Mimi Onuoha is a systematized archive of
hypothetical datasets. These data voids
stand as potent reminders of what a society
chooses to ignore or overlook.

Additional Projects
Timo Arnall, Immaterials: Ghost in the
Field, 2009, RFID probe, long-exposure
photography, and animation.

Timo Arnall, Jørn Knutsen, and Einar Sneve
Martinussen, Immaterials: Light Painting WiFi,
2011, WiFi network sensor, LED lights, and
long-exposure photography.

Tega Brain, What the Frog’s Nose Tells
the Frog’s Brain, 2012, custom fragrance,
electronics, and home energy monitor.

Centre for Genomic Gastronomy, Smog
Tasting, 2015, air samples, experimental food
cart, and smog recipe.

Hans Haacke, Condensation Cube, 1963–
1965, kinetic sculpture.

Terike Hapooje, Dialogue, 2008, real-time
video of thermal camera imagery.

Usman Haque, Natural Fuse, 2009, network
of electronically assisted plants.

Joyce Hinterding, Simple Forces, 2012,
conductive graphite drawing and analog
electronics.

Osman Khan, Net Worth, 2006, magnetic
card reader, custom software, and
interactive installation.

Stacey Kuznetsov, Jian Cheung, George
Davis, and Eric Paulos, Air Quality Balloons,
2011, air quality sensors, microelectronics,
and weather balloons.

Rafael Lozano-Hemmer, Pulse Room, 2006,
interactive installation with heart-rate
sensors activating an array of incandescent
light bulbs.

Rafael Lozano-Hemmer, Tape Recorders,
2011, interactive installation with sensors and
robotically activated measuring tapes.

Agnes Meyer-Brandis, Teacup Tools, 2014,
tea cups and atmospheric sensors.

Joana Moll, CO2GLE, 2015, online carbon
calculator.

Joana Moll, DEFOOOOOOOOOOOOOOO-
OOOOOOREST, 2016, online visualization.

Moon Ribas, Seismic Sensor, 2007–2019,
seismic-sensing body implants.

Anri Sala, Why the Lion Roars, 2020,
temperature-based editor of feature films.

Julijonas Urbonas, Counting Door, 2009,
modified video camera and door that tracks
its visitor count.

Readings
Benjamin H. Bratton and Natalie Jeremijenko,
Suspicious Images, Latent Interfaces (New
York: Architectural League of New York,
2008).

Catherine D’Ignazio and Lauren F. Klein, “On
Rational, Scientific, Objective Viewpoints
from Mythical, Imaginary, Impossible
Standpoints,” in Data Feminism (Cambridge,
MA: MIT Press, 2020).

Jennifer Gabrys, “How to Connect Sensors”
and “How to Devise Instruments,” in How
to Do Things with Sensors (Minneapolis:
University of Minnesota Press, 2019), 29–71.

Natalie Jeremijenko, “A Futureproofed Power
Meter,” Whole Earth, Summer 2001.

Mimi Onuoha, “When Proof Is Not Enough,”
FiveThirtyEight (blog), ABC News Internet
Ventures, July 1, 2020.

James C. Scott, Seeing like a State: How
Certain Schemes to Improve the Human
Condition Have Failed (New Haven: Yale
University Press, 1998).

114 Code as Creative Medium

115Assignments

Pe
rs

on
al

 P
ro

st
he

tic

116 Code as Creative Medium

Personal Prosthetic
A new verb for the body

Brief
Design a prosthetic device that responds to its
wearer’s behavior or environment, enabling “a
new verb for the body.” Your device should sense
something (movement, sound, temperature,
online data), possibly with the aid of machine
learning, and produce an electromechanical
action or result in response. Make a video of your
prosthetic in use. Your video could be candid,
documenting your work in a public location, or it
could be staged to tell the narrative of your work.

Marshall McLuhan considered all technologies
to be an extension of the human body, arguing
that in one way or another they serve to amplify
or accelerate existing physical faculties or
cognitive functions. Use McLuhan’s terminology
to discuss your project: is your wearable a
physical, cognitive, or communicative extension
of the body? What does your prosthetic
augment, replace, constrain, assist, reinforce,
signal, reveal, communicate, strengthen, amplify,
or diminish?

Learning Objectives
• Review, discuss, and appraise the design of

wearable technologies
• Generate and critique design concepts spanning

interaction design, performance art, fashion,
and biomimetics

• Design a physical computing system
that combines sensors, actuators, and
microcontrollers (such as an Arduino) into
interactive electronic circuits

Variations
• Constrain your response to a single type of

action, such as a physical gesture.
• Design a biomimetic prosthetic, inspired by

an animal. What new power does it lend to
the wearer?

• Design for one has often resulted in design for
many. Pick a specific person. Interview them
about their habits, and observe their daily
routine. Create a prosthetic device just for them.

• Subvert individualism: design a prosthetic device
that two or more people wear together.

• Suppose, through the wearable, that your body
is connected to the Internet. What signal should
your body communicate? With whom?

• Omit the sensor. Instead, make a preexisting
dataset experienceable (or performable).

• Instructors: Ask your students to present their
prosthetics in a fashion show.

Making It Meaningful
Prosthetics are any artificial additions to the
body. They are used in a wide range of contexts,
including medicine, combat, fitness, theater,
and fashion. Many people’s daily attire includes
prosthetics that enhance bodily functions,
including perception (such as eyeglasses and
hearing aids) and mobility (such as walking
canes and inline skates), or that protect the
body from the environment (e.g., shoes,
helmets, respirators, knee pads). Jewelry can be
understood as “social prostheses,” operating as
markers of social status, signifiers of gender or
community affiliations, tools of beautification,

carriers of personal meaning, or (as with amulets
and phylactery) talismanic protection.

Increasingly, prosthetics are conduits for digital
data. Body-worn computers like smartphones
allow the wearer to exchange signals and
media from any location, and across heretofore
impossible distances. More specialized
telemetry appendages like fitness trackers,
personal locator beacons, and parolee ankle
monitors collect and broadcast the wearer’s
position, activity, and even metabolic data—
sometimes to unintended recipients. Digital data
now penetrates the body itself, in a burgeoning
market of “intimate hardware” with Bluetooth
capabilities. In a quest to prototype a “better
human,” proponents of the transhumanist
“body hacking” movement invade the body’s
boundaries even further, implanting RFID chips
and other circuits under their own skin. The
propinquity of these devices brings new urgency
to familiar problems in privacy and security.

Prosthetics as a genre raises important
questions about typical and atypical bodies,
abilities, and identities. Rather than approaching
these technologies as a means to restore
the body to some sort of assumed norm, this
prompt invites a reframing of the discourse
of disability—as scholar Sara Hendren urges,
“rethinking the default bodily experience.”

What could it mean for a person to have a
prehensile tail, or chemosensitive antennae?

117Assignments

What if one’s appearance could disrupt the
normal operation of camera systems? The
design of a novel prosthesis opens the door
to imaginative play with one’s identity and
abilities. Explored through the lens of costumes
and performance, prosthetics also become a
probe for remapping social rituals or, through
fantasy and biomimicry, defamiliarizing
biological norms. The new prosthetist can invent
anatomies, performative appendages, and novel
organs for extrasensory perception. She might
help a client assume a new social identity, or
forge a new relationship to infrastructures
of surveillance, in ways that offer a fresh
perspective on technocultural systems we often
take for granted.

118 Code as Creative Medium

119Assignments

120 Code as Creative Medium

121Assignments

129 130 131

132

133

134

135

136

137

Captions
129. Brazilian artist Lygia Clark pioneered
the exploration of prosthetics within a
conceptual art context. Her Dialogue Goggles
device (1964), designed to be worn by two
simultaneous participants, restricts their field
of vision exclusively to mutual eye contact.

130. Sputniko!’s Menstruation Machine (2010),
fitted with a blood-dispensing mechanism and
electrodes that shock the abdomen, is a device
that simulates the pain and bleeding of a five-
day menstruation process.

131. ScreamBody (1997–1998), a “wearable
body organ” by Kelly Dobson, is a portable
space for screaming. The scream is recorded
and stored in the device, and can later be
released in a place where, when, and how the
wearer chooses.

132. Sarah Ross’s Archisuits (2005–2006)
are an edition of leisure suits that enable
the wearer to recline comfortably on public
furniture otherwise designed to deter sleeping
in public. The clothes contain large foam pads
that fit into, onto, or around specific structures
in the built environment of Los Angeles.

133. Inspired by the perceptual powers of
other species, Chris Woebken and Kenichi
Okada’s Animal Superpowers (2008–2015) is a
series that augments or amplifies the wearer’s
sensing abilities. Their Ant Apparatus, for
example, allows you to “see” with microscopes
on your hands, while Bat Vision Goggles
makes ultrasonic sound audible to humans.

134. Caitrin Lynch and Sara Hendren’s
Engineering at Home (2016) presents an
online archive of vernacular prosthetics
and daily living tools devised by Cindy, a
quadruple amputee.

135. Entry Holes and Exit Wounds (2019), a
performance by CMU sophomore Steven
Montinar, uses a kinesthetically enhanced
garment to make data palpable. In this
project, cellphone vibrators, embedded in
clothing and sequenced by an Arduino, index
the gunshots that killed 12 black victims of
police brutality.

136. The Social Escape Dress (2016) is a
part of the Urban Armor project by Kathleen
McDermott, a series of electronic wearables
that investigate personal and public space.

137. The Rift: An Afronaut’s Journey (2015),
a performance by Ayodamola Okunseinde,
presents Afrofuturist wearable technologies
for a time-traveling protagonist from
the future, Dr. Tanimowo, who seeks to
understand the reasons for the collapse of
his culture. The performer’s “Afronaut suit”
includes a communication device, a feeding
system, and a breathing apparatus.

Additional Projects
Lea Albaugh, Clothing for Moderns, 2014,
electromechanical garments, Carnegie
Mellon University, Pittsburgh.

Siew Ming Cheng, Spike Away – How to
Protect Your Personal Space on the Subway,
2013, plastic vest with spikes, Singapore.

Jennifer Crupi, Unguarded Gestures 1–3,
2019, aluminum and silver implements.

Amisha Gadani, Animal Inspired Defensive
Dresses, 2008–2011, interactive garments.

Mattias Gommel, Delayed, 2003, interactive
sound installation, «Son Image», Laboratorio
Arte Alameda, Mexico City.

Neil Harbisson and Moon Ribas, Cyborg Arts,
2010–2020, cyborg art organization.

Kate Hartman, Porcupine Experiments, 2016,
lasercut cardboard with straps and fittings.

Rebecca Horn, Finger Gloves, 1972, finger
extension sculptures.

Di Mainstone et al., Human Harp, 2012–2015,
suspension bridge interactive sound art.

Daito Manabe, electric stimulus to face – test,
2009, bio-responsive wearable device.

Lauren McCarthy, Tools for Improving Social
Interactivity, 2010, bio-responsive garments.

MIT AgeLab, AGNES (Age Gain Now Empathy
System), 2005, age-simulating garments and
prostheses, MIT, Cambridge.

Alexander Müller, Jochen Fuchs, and Konrad
Röpke, Skintimacy, 2011, haptic device and
sound-processing software.

Sascha Nordmeyer, Communication
Prosthesis (HyperLip), 2009, facial prosthesis.

Stelarc, Third Hand, 1980, robotic prosthetic
arm, Yokohama.

Jesse Wolpert, True Emotion Indicator, 2014,
electronic headware.

122 Code as Creative Medium

Readings
Philip A. E. Brey, “Theories of Technology as
Extension of Human Faculties,” Metaphysics,
Epistemology, and Technology, Research
in Philosophy and Technology 19, ed. C.
Mitcham (London: Elsevier/JAI Press, 2000),
59–78.

Erving Goffman, The Presentation of Self in
Everyday Life (Garden City, NY: Doubleday,
1959).

Donna J. Haraway, “A Cyborg Manifesto:
Science, Technology, and Socialist-Feminism
in the Late Twentieth Century,” in Simians,
Cyborgs, and Women: The Reinvention of
Nature (New York: Routledge, 1991), 149–181.

N. Katherine Hayles, How We Became
Posthuman: Virtual Bodies in Cybernetics,
Literature, and Informatics (Chicago:
University of Chicago Press, 1999).

Sara Hendren, What Can a Body Do?
(New York: Riverhead Books, 2020).

Madeline Schwartzman, See Yourself
Sensing: Redefining Human Perception
(London: Black Dog Press, 2011).

123Assignments

Pa
ra

m
et

ric
 O

bj
ec

t

124 Code as Creative Medium

Parametric Object
Post-industrial design

Brief
Create a program that generates 3D objects.
More specifically, your program should generate
a family of 3D objects that are all parameterized
in the same way, but that differ when their
parameters are set to different values. The
output from your program should be suitable,
at least in principle, for prototyping in the
real world.

Give consideration to the way in which your
parametric object operates as a cultural
artifact. How might your software attain special
relevance by generating things that address
a real human need or interest? Can it make a
dataset tangible or wearable? Is it possible for
a generated object to be critical or tactical? Is it
a tool? Garment? Decoration? Can it be funny,
surprising, or unexpected? If you are hunting for
a concept, it may be helpful to think of things
in the world around us that are mass-produced
but that could be (or ought to be) personalized.
Document your object so that it can be shared
with relevant audiences.

Learning Objectives
• Apply generative design principles to the design

of 3D form
• Control solid geometry operations with

algorithmic techniques
• Discuss form in relation to the contexts of the

body, society, or the environment

Variations
• For introductory students: Write software to

define a surface of revolution that produces a
series of vases, cups, candlesticks, spinning
tops, etc.

• Working “unplugged” (without a computer),
devise a set of rules for creating a class of
objects from everyday materials. Your rules
should incorporate an element of chance (such
as a coin flip) or a dependency on real-world
data (by collecting a measurement). Make at
least two objects according to your rules.

• Write software that generates a tactile,
3D-printable map from cartographic data.

Making It Meaningful
Generative design is the activity of authoring a
system of rules for automating design decisions.
In the case of the parametric object, a form is
produced with properties articulated by certain
variables. Changing the values of these variables
changes the form in response, and incorporating
elements of contingency or randomness can
produce unique objects in every iteration.
Among other approaches, parametric forms can
be assembled from different arrangements of
modular components, lofted from mathematical
curves and surfaces, or produced through the
actions of simulated physics.

3D parametric objects can be rendered in
physical materials with the help of a wide range
of fabrication technologies. These include
additive technologies like 3D printers, which

accrete or accumulate material, and subtractive
technologies such as mills, which remove
material from a piece of stock. The earliest of
these, the CNC (computer-numeric controlled)
milling machine, was developed in the 1950s
through a military-funded, Cold War initiative
to create mathematically precise propellers
for aircraft. The early 1960s saw the parallel
development of CAD (computer-aided design)
tools to simplify the process of specifying
geometries for CNC manufacture, and it wasn’t
long before artists finagled access to these
technologies. In 1965, around the same time
as the first exhibition of computer-generated
plotter art, pioneer Charles “Chuck” Csuri
became the first artist to employ CNC tooling
for expressive ends, in his abstract Numeric
Milling sculptures.

The creation of generative forms does not
necessarily require computer programming.
Traditions of process-based, open-ended and
rule-based conceptual art create meaning in
the tension between algorithmic logics and the
material or social contingencies of the real world.
Highly systematic thinking underpins works
like SCUMAK by Roxy Paine (a metasculptural
machine that extrudes randomly-shaped
plastic blobs); Nathalie Miebach’s handmade
sculptures, structured according to weather
data; and Laura Devendorf’s Being the Machine
project, an “alternative 3D printer” in which
instructions typically provided to fabrication
machines are instead given to human makers.

125Assignments

Manufactured objects gain a role in our lives
through their utility as furniture, housewares,
tools, toys, and ornaments. At times, however,
the “one size fits all” approach in industrial
design means “no size fits any.” Parametric
design counters this by enabling “mass
customization”—offering personalization akin
to handcrafted and homemade forms, but at
a heretofore impossible scale. Eyeglasses,
prosthetics, and other wearables, for example,
can be customized using measurements or
scans taken from an individual’s body. Maps,
histograms, and time series can be generated
from data and rendered into tactile media; this
“physical visualization” approach can be useful
in widening the accessibility of data for the
visually impaired, or in producing mementos
or souvenirs that encode information from
highly personal experiences. In situations
where uniqueness is prized, algorithmic design
techniques can guarantee that no two items are
alike. Parametric design also holds the alluring
promise of creating “optimal” forms for a given
situation (e.g., solving for the greatest strength
per unit of material). While this is important
for reducing the material impact of design
processes, we must also recognize that over-
optimization risks producing unduly specific
outcomes in a dynamic world.

126 Code as Creative Medium

127Assignments

128 Code as Creative Medium

129Assignments

138 139 140

141

142

143

144

145 146

147

148

149

Captions
138. Fahz (2015), by Brooklyn design studio
Des Des Res, is a fabrication system for
producing unique custom vases. The negative
space around each vase is generated from
silhouettes of the customer’s face.

139. Jessica Rosenkrantz and Jesse Louis-
Rosenberg, also known as the design studio
Nervous System, are pioneers of simulating
natural phenomena to produce 3D forms.
Their Kinematic Dress (2014) is made up of
over 2000 unique, interlocking triangular
facets that are capable of accommodating
the curves of the body. The entire dress is 3D
printed as a single folded piece of material.

140. Jonathan Eisenman’s Vase Parametric
Model (2014) illustrates how a simple vase
form may be parameterized.

141. Grand Old Party (2013) by Matthew Epler
is a set of computationally generated butt
plugs. Each form is a “physical visualization”
whose diameter represents the voter approval
rating, over time, of select presidential
candidates.

142. Filament Sculptures (2014), by the
mononymous Austrian artist Lia, are
computationally generated forms in which a
3D printer’s hot filament has been allowed to
droop in unpredictable ways. Each sculpture
arises through a negotiation between virtual
and physical parameters, articulated by the
CAD model, 3D printer settings, and natural
forces in the physical world.

143. Charles Csuri’s Numeric Milling (1968)
sculpture is one of the earliest artworks
produced with a computer-controlled milling
machine. Csuri wrote: “While the device
was capable of making a smooth surface, I
decided it was best to leave the tool’s marks
for the paths.”

144. For his interactive installation Wage
Islands (2015), Ekene Ijeoma generated
a new topography for New York City, in
which elevation represents the inverse of
median wages. As the lasercut sculpture is
submerged into ink-dyed water, it visualizes
the “wage islands” where low-wage workers
can afford to rent.

145. Adrien Segal’s Cedar Fire Progression
(2017) is a data-driven sculpture that depicts
(from bottom to top) the evolving geographic
contour of a wildfire front over time.

146. Amanda Ghassaei’s 3D Printed
Record (2012) is a playable, 12-inch, 33rpm
phonograph disc whose spiral groove
geometry is computationally derived from
audio data. The fidelity of its sound reveals
the limits and artifacts of digital fabrication.

147. Meshu (2012) by Rachel Binx and Sha
Huang exemplifies the use of 3D fabrication
pipelines to produce personalized jewelry
pieces, on demand, that are derived from a
customer’s geospatial information.

148. Open Fit Lab (2013) by Lisa Kori Chung
and Kyle McDonald is a performance in which
3D scans of the audience’s bodies are used
to generate garment patterns for on-the-spot
assembly of custom-tailored pants.

149. The objects in Morehshin Allahyari’s
Material Speculation: ISIS series (2015–2016)
are procedural reconstructions of ancient
artifacts destroyed by ISIS militants—
systematically recreated from dozens of
publicly available photographs. Shown here is
Allahyari’s reconstruction of a Roman-period
figure of King Uthal of Hatra, smashed at the
Mosul Museum in 2015.

Additional Projects
Alisa Andrasek et al., Li-Quid, 2016,
generated chair design.

Ingrid Burrington, Alchemy Studies, 2018,
iPhone 5 cast in resin sphere.

Mat Collishaw, The Centrifugal Soul, 2017,
mixed media three-dimensional zoetrope.

David Dameron, in Paul Freiberger, “Sculptor
Waxes Creative with Computer,” InfoWorld,
July 6, 1981.

Laura Devendorf, Being the Machine,
2014–2017, videos, instructable, and app
for generating human-executable g-code
fabrication instructions.

Erwin Driessens & Maria Verstappen, Tuboid,
2000, computationally generated wooden
sculptures and virtual environments.

John Edmark, Blooms, 2015, 3D-printed
stroboscopic sculptures.

Madeline Gannon, Reverberating across the
Divide, 2014, context-aware modeling tool.

Gelitin, Tantamounter 24/7, 2005, copy
machine performance.

Nadeem Haidary, In-Formed, 2009, fork as
data visualization.

Mike Kneupfel, Keyboard Frequency
Sculpture, 2011, 3D-printed information
visualization.

Golan Levin and Shawn Sims, Free Universal
Construction Kit, 2012, software and SLS
nylon 3D prints.

Nathalie Miebach, To Hear an Ocean in a
Whisper, 2013, data sculpture.

Neri Oxman et al., Silk Pavilion, 2013,
structure made by silkworms.

Roxy Paine, SCUMAK (Auto Sculpture Maker),
1998–2001, sculpture-making machine.

Matthew Plummer-Fernández and Julien
Deswaef, Shiv Integer, 2016, Thingiverse
mashup bot and SLS nylon 3D prints.

Stephanie Rothenberg, Reversal of Fortune:
The Garden of Virtual Kinship, 2013, telematic
garden visualizing philanthropic data.

Jenny Sabin, PolyMorph, 2014, modular
ceramic sculpture.

Jason Salavon, Form Study #1, 2004, video of
generated objects.

Keith Tyson, Geno Pheno Sculpture “Fractal
Dice No. 1”, 2005, algorithmically generated
sculpture.

Wen Wang and Lining Yao et al.,
Transformative Appetite, 2017,
computationally shaped pasta.

Mitchell Whitelaw, Measuring Cup, 2010,
generated cup visualizing 150 years of
Sydney temperature data.

Maria Yablonina, Mobile Robotic Fabrication
System for Filament Structures, 2015,
fabrication system.

130 Code as Creative Medium

Readings
Christopher Alexander, “Introduction” and
“Goodness of Fit,” Notes on the Synthesis of
Form (Cambridge, MA: Harvard University
Press, 1964), 1–27.

Morehshin Allahyari and Daniel Rourke, The
3D Additivist Cookbook (Amsterdam: The
Institute of Network Cultures, 2017).

Nathalie Bredella and Carolin Höfler, eds.,
“Computational Tools in Architecture,
Cybernetic Theory, Rationalization, and
Objectivity,” special issue, arq: Architectural
Research Quarterly 21, no. 1 (March 2017).

Joseph Choma, Morphing: A Guide to
Mathematical Transformations for Architects
and Designers (London: Laurence King
Publishing, 2013).

Pierre Dragicevic and Yvonne Jansen, List of
Physical Visualizations and Related Artifacts,
dataphys.org, accessed April 13, 2020.

Marc Fornes, Scripted by Purpose: Explicit
and Encoded Processes within Design, 2007,
exhibition.

Wassim Jabi, Parametric Design for
Architecture (London: Laurence King
Publishing, 2013).

Vassilis Kourkoutas, Parametric Form Finding
in Contemporary Architecture: The Simplicity
within the Complexity of Modern Architectural
Form (Riga, Latvia: Lambert Academic
Publishing, 2012).

Golan Levin, “Parametric 3D Form” (lecture,
Interactive Art & Computational Design,
Carnegie Mellon University, Pittsburgh,
Spring 2015).

D’Arcy Wentworth Thompson, On Growth and
Form, 2nd ed. (Cambridge, UK: Cambridge
University Press, 1942).

Claire Warnier et al., eds., Printing Things:
Visions and Essentials for 3D Printing (New
York: Gestalten, 2014).

Liss Werner, ed., (En)Coding Architecture: The
Book (Pittsburgh: Carnegie Mellon University
School of Architecture, 2013).

131Assignments

V
ir

tu
al

 P
ub

lic
 S

cu
lp

tu
re

132 Code as Creative Medium

Virtual Public Sculpture
Augmenting a site

Brief
Robert Smithson has remarked that “the site
is a place where a piece should be but isn’t.”
In this assignment, you are asked to create the
missing piece for a site using augmented reality
(AR). More specifically: place and view a virtual
object of your choice, at a scale of your choice,
in a physical location of your choice, with a
programmatic behavior of your choice.

When choosing your site, consider the
conceptual and aesthetic opportunities offered
by its location and history, as well as the ways
in which it is occupied. Write down some
observations about who uses the site, and how.
Your location may be public, generic, or private.
For example, it could be a prominent landmark,
an unspecified supermarket aisle, your bedroom,
or even the palm of your hand.

Your virtual object may be appropriated,
downloaded, recycled, modeled, or scanned. You
might conceive of your object as a “sculpture,”
“monument,” “installation,” or “decoration,” or
as something else entirely (“anomaly,” “natural
formation”). Write some code that makes it
behave in a certain way. For example, it could
rotate slowly in place, emit a shower of particles,
or change size whenever the viewer gets close.

Assume that your intervention will be viewed on
a mobile device or tablet. Document your project
in video, capturing both “over-the-shoulder”
and “through-the-device” perspectives. Your

documentation should convey how an audience
would experience your artwork. How does
your project change and reflect relationships
between physical and virtual, public and private,
screen and site? Publish your intervention, and
its documentation, so that it can be shared
with others.

Learning Objectives
• Develop, design, and execute a creative

intervention at a specific site
• Review the technical requirements and

workflow of augmented reality
• Plan and create documentation of augmented

reality projects

Variations
• Develop and enact a performance that makes

use of your virtual object.
• Create an intervention that appears to remove

an object, rather than adding one.
• Design an experience that connects both a

virtual intervention (in AR) and a real,
physical intervention (such as a prop) of your
own design.

• “Gamify” your site with augmented reality
objects that turn it into an obstacle course,
treasure hunt, escape room, playing field, or
game board.

• Research the history or current use of the site,
and develop an augmentation that uses data
derived from this place. Examples of data might
include statistics about power consumption
or pollution, architectural or geologic features,

historic photographs, audio clips of interviews,
or real-time weather information.

Making It Meaningful
Augmented reality (AR) adds a layer of virtual
information to the world. Media like 3D
animations, text, or images can be anchored
to locations, landscape features subtracted,
and the world distorted. Whereas public
artworks are sometimes criticized for their
lack of engagement with the concerns of local
communities (and scathingly derided as “plop
art”), public artworks in AR offer opportunities
to counter this criticism with their potential to be
dynamic, interactive, and mutable by audiences.
Situated in public space, AR artworks bring
together the expressive languages and critical
traditions of public art, street performance,
graffiti, and video games.

Advertising, branding, and other corporate
media are ready targets for unsanctioned activist
interventions using AR. As Banksy urges, “Any
advert in a public space that gives you no choice
whether you see it or not is yours....You can do
whatever you like with it. Asking for permission
is like asking to keep a rock someone just threw
at your head.”i AR in public space offers the
possibility of articulating or even prototyping
new power relationships in ways that would be
impossible within the controlled channels of
institutions and mass media. As Mark Skwarek
and Joseph Hocking demonstrate in The Leak
in Your Hometown (2010), one strategy to give

133Assignments

interventions wide traction is to use well-known
logos or other ubiquitous symbols as visual
“anchors” (targets) for critical augmentation,
enabling a project to become “site-specific” in
any place featuring that sign. For the purposes of
culture jamming and design activism, which aim
to reframe issues and shift opinion through the
viral manipulation of media, this combination of
Internet-distributed apps with a savvy selection
of AR anchors can be particularly effective.

This prompt is similar to the Augmented
Projection assignment, in that both invite the
artist to create a dynamic virtual addition to
a specific site. In both, the challenge is to
design interventions that are tightly coupled
to their contexts. There are, however, some
key differences. Where projections operate
like painting, obeying logics of representation,
abstraction, and illusion, augmented reality is
more akin to sculpture, deploying objects that
do not represent, but simply exist in space.
Formally speaking, augmented reality does not
require a projection surface, making it possible
to suspend AR objects in mid-air or have them
move around the viewer. Likewise, 3D forms in
AR can exist at any apparent scale, from palm-
sized to sky-filling, and can even appear behind
or inside real-world objects (as with an X-ray).
Taken together, these properties of AR allow for
new ways of choreographing the actions and
movements of audiences. Finally, the distributed
nature of AR displays also means that people in
the same place can see different things, or (as

Skwarek and Hocking show) people in different
places can see the same thing.

For better or worse, augmented worlds observed
through phones, tablets, and goggles are not
universally viewable, and must be actively
experienced by participants who are in on the
joke—in what are ultimately private views in a
public space. This hyper-individual nature of
AR may eventually have unforeseen political
consequences, such as digital redlining, the
creation of filter bubbles, and the amplification
of radical views.

134 Code as Creative Medium

135Assignments

136 Code as Creative Medium

150 151

152

153 154 155

156

Captions
150. Keiichi Matsuda’s HYPER-REALITY
(2016) is a richly detailed short film
that anticipates a dystopic near-future
of ubiquitous AR advertising, gamified
consumerism, and corporate surveillance.

151. Jeffrey Shaw’s Golden Calf (1994) was
a pioneering work of augmented reality.
Using a handheld LCD screen fitted with a
Polhemus position tracking system, viewers
could observe a virtual 3D sculpture of a
golden calf hovering above an otherwise
empty pedestal.

152. Nail Art Museum (2014) by Jeremy Bailey
is a tiny virtual museum in which canonical
works of art appear positioned on finger-
mounted plinths.

153. The Whole Story (2017) by Y&R New
York aims to address gender parity in public
monuments by allowing users to view, share,
and add virtual statues of notable women
alongside existing public statuary.

154. Mark Skwarek and Joseph Hocking
created The Leak in Your Hometown (2010)
in response to the BP Deepwater Horizon oil
spill. The augmented reality smartphone app
anchors an animation of a leaking oil pipe to
any BP logo.

155. Nathan Shafer’s Exit Glacier project
(2012) is a site-specific smartphone app that
depicts the historic extent of the Exit Glacier
in the Kenai Mountains of Alaska, visualizing
glacial recession due to climate change.

156. Augmented Nature (2019) by Anna
Madeleine Raupach uses natural objects like
trees, stumps, and lichen-covered rocks as
anchors for poetic site-specific animations.

Additional Projects
Awkward Silence Ltd, Pigeon Panic AR, 2018,
augmented reality pigeon game app.

Aram Bartholl, Keep Alive, 2015, outdoor
boulder installation with fire-powered WiFi
and digital survival guide repository.

Janet Cardiff and George Bures Miller, Alter
Bahnhof Video Walk, 2012, augmented
reality walking tour of the Alter Bahnhof,
Kassel, Germany.

Carla Gannis, Selfie Drawings, 2016, artist
book with AR experiences.

Sara Hendren and Brian Glenney, Accessible
Icon Project, 2016, icon and participatory
public intervention.

Jeff Koons, Snapchat: Augmented Reality
World Lenses, 2017, augmented reality public
sculpture installations.

Zach Lieberman and Molmol Kuo, Weird Type,
2018, augmented reality text app.

Lily & Honglei (Lily Xiying Yang and Honglei
Li), Crystal Coffin, 2011, AR app, virtual China
Pavilion at the 54th Venice Biennale.

Jenny Odell, The Bureau of Suspended
Objects, 2015, archive of discarded
belongings.

Julian Oliver, The Artvertiser, 2008, AR app
for advertisement replacement.

Damjan Pita and David Lobser, MoMAR, 2018,
AR art exhibition.

Mark Skwarek, US Iraq War Memorial, 2012,
participatory AR memorial.

Readings
AtlasObscura.com, “Unusual Monuments,”
accessed April 14, 2020.

Henry Chalfant and Martha Cooper, Subway
Art, 2nd ed. (New York: Thames and Hudson,
2016).

Vladimir Geroimenko, ed., Augmented
Reality Art: From an Emerging Technology to
a Novel Creative Medium, 2nd ed. (New York:
Springer, 2018).

Sara Hendren, “Notes on Design Activism,”
accessibleicon.org, last modified 2015,
accessed April 14, 2020.

Josh MacPhee, “Street Art and Social
Movements,” Justseeds.org, last modified
February 17, 2019, accessed April 14, 2020.

Ivan Sutherland, “The Ultimate Display,”
Proceedings of the IFIP Congress 65, vol.
1 (London: Macmillan and Co., 1965):
506–508.

Notes
i. Banksy, Cut It Out (United Kingdom:
Weapons of Mass Disruption, 2004).

137Assignments

E
xt

ra
po

la
te

d
B

od
y

138 Code as Creative Medium

Extrapolated Body
Interpreting the dynamic human form

Brief
Create a virtual mask or costume, and use it in
a performance.

In this assignment, you are asked to write
software that creatively interprets or responds
to the movements of your face or body, as
observed by a motion capture or computer vision
system. More precisely: develop a computational
treatment of spatiotemporal data captured from
a person, such as the coordinates of features
on their face, the 3D locations of their joints, or
points along the 2D contour of their silhouette.

Consider whether your treatment serves a ritual
purpose, a practical purpose, or works to some
other end. It may visualize or obfuscate your
personal information. It may allow you to assume
a new identity, including something nonhuman
or even inanimate. It may have articulated parts
and dynamic behaviors. It may be part of a game.
It may blur the line between self and others, or
between self and not-self.

Depending on the materials at hand, your system
may use a standard webcam or a specialized
peripheral (like a Kinect depth sensor).
Furthermore, your solution may require you to
learn how to use APIs for real-time face tracking
or pose estimation, receive and interpret data
transmitted by precompiled body-tracking apps
(e.g., via OSC), or record and interpret data from
a professional mocap system.

Design your software for a specific performance,
and plan your performance with your
software in mind; be prepared to explain your
creative decisions. Rehearse and record your
performance.

Learning Objectives
• Survey the tools and workflows for motion

capture
• Use algorithmic techniques to develop a

visual interpretation of motion data
• Explore aesthetic and conceptual possibilities

in animating human form and movement

Variations
• Instructors: It is helpful to provide students with

a code template for a tracking library, such as
PoseNet (via ml5.js) or FaceOSC. In so doing,
this assignment may be restricted to just the
face or body.

• You may perform your project yourself, or
you may collaborate with any performer
available to you. Is your software intended for
a person with highly specialized movement
skills (dancer, musician, athlete, actor), or can
anyone operate it?

• The assignment brief poses the problem of
creating interactive software that responds to
real-time data. Instead, generate an animation
using pre-recorded (offline) motion capture
data. Create or select this data carefully. You
might record data yourself, if you have access to
a motion capture studio; use mocap data from
an online source (such as a research archive or

commercial vendor); or creatively augment a
favorite YouTube video with the help of a pose
estimation library.

• Remember that you may position your virtual
“camera” anywhere; your motion capture data
need not be displayed from the same point of
view as your sensor. Consider rendering your
performer’s body from above, from a moving
location, or even from their own point of view.

• In contrast to an expressive concept (such as
a character animation or playful interactive
mirror), develop an analytic treatment, such
as an information visualization, that diagrams
and compares the movements of body joints or
facial landmarks over time. For example, your
software could present comparisons between
different people making similar expressions, or
it could provide insight into the articulations of
movements by a violinist.

• Consider using sound synchronized to your
motion capture data. This sound might be the
performer’s speech, music to which they are
dancing, or sounds synthetically generated by
their movements.

• Rather than depicting the body itself, write
software to visualize how an environment is
disturbed by a body, as with footprints in sand.

• Use your face or body to puppeteer something
nonhuman: a computer-generated animal,
monster, plant, or customarily inanimate object.

• Visualize a relationship between two or more
performers’ bodies.

• Focus on the actions of a single part of the body
or face.

139Assignments

Making It Meaningful
Costumes, masks, cosmetics, and digital face
filters allow the wearer to fit in or act out. We
dress up, hide or alter our identity, play with
social signifiers, or express our inner fursona.
We use them to ritualistically mark life events
or spiritual occasions, or simply to obtain
“temporary respite from more explicit and
determinate forms of sociality, freeing us to
interact more imaginatively and playfully with
others and ourselves.”i

Many innovations in understanding, visualizing,
and augmenting the dynamic human body
originate as analytic tools (most often, for
military purposes) that are then creatively
repurposed as expressive ones (for the arts
and entertainment). The effect of this evolution
is that scientific techniques for capturing
body movement, such as Étienne-Jules
Marey’s chronophotography, contribute to the
development of new artistic languages, such
as Marcel Duchamp’s Cubist abstraction.
Additional examples include the motion
capture suit, first developed by Marey in 1883
in physiological research on soldier movement,
and the technique of what is now called “light
painting” (long-exposure photographs of lights
attached to moving bodies), explored in depth in
1914 by Frank and Lillian Gilbreth to analyze and
optimize the activities of soldiers and workers.

Body movement is an important dimension
of storytelling, central to the vocabularies of

performance and dance, and also to those
of animation and puppeteering, where it is
essential to creating the illusion of life. As
Alan Warburton explains, animators develop
character by “creating an equivalence between
who someone is, and how they move....
Any audience should know instantly who a
character is just from their motion.”ii This
conflation of how we look and move and who
we are is also a foundational premise of video
surveillance technologies—which, extending
from problematic disciplines like physiognomy,
phrenology, and somatotypology, aim to
deduce a subject’s moral character from their
outward appearance.

The face, with its significant role in identity
and communication,iii is of particular focus
in carceral technologies. Facial recognition
systems are perilous for many reasons: they
enable automated nonconsensual identification
and are therefore ripe for misuse in the context
of policing and authoritarian regimes; they
operate with the allure of objectivity despite
being prone to catastrophic inaccuracies; they
are difficult to audit and contest by those they
impact most; and their use is often invisible. On
the flip side, face trackers have also been used
for expressive, entertaining, and educational
purposes. They serve as digital masks and
face filters; as controllers for games (as in
Elliott Spelman’s “eyebrow pinball” game,
Face Ball); as musical interfaces (Jack Kalish’s
Sound Affects performance); as controllers for

richly parameterized graphic designs (Mary
Huang’s typographic TypeFace); as a means for
furthering public understanding of surveillance
technologies (Adam Harvey’s CV Dazzle); and
as tools for interrogating contemporary culture
(Christian Moeller’s Cheese or Hayden Anyasi’s
StandardEyes). In working with computational
face and body tracking libraries, media artists
and interface designers are encouraged to
reflect on the origins of their tools, and the
extent to which their use in a creative work
reinforces the teleology of carceral surveillance
systems. How might creative engagements
activate what Ruha Benjamin calls “a liberatory
imagination,” where the goal is to illuminate or
circumvent these mechanisms and envisage a
more just, egalitarian, and vibrant world?iv

140 Code as Creative Medium

141Assignments

157 158

159

160

161

Captions
157. Using pose estimation and speech
recognition technologies, choreographer Bill
T. Jones collaborated with Google Creative
Lab to produce Body, Movement, Language
(2019), a series of interaction studies in
which participants can use their bodies to
position their own spoken words in the space
around them.

158. In partnership with the London 2012
Olympic and Paralympic Games, Memo
Akten and Davide Quayola developed Forms,
a series of abstract 3D visualizations of
athletes’ trajectories and mechanics.

159. Referencing the utopian formalism of
1960s architecture, Walking City (2014) by
Universal Everything is a “slowly evolving
video sculpture” structured around a cycle of
human locomotion.

160. While students at the University of Paris
8, Sophie Daste, Karleen Groupierre, and
Adrien Mazaud developed Miroir (2011), an
interactive installation in which a spectator
sees a ghostly animal head superimposed
onto the reflection of their own face. The
anthropomorphized double closely follows
their movements and expressions.

161. Más Que la Cara (2016), a street-level
interactive installation by YesYesNo, presents
imaginative, poster-like interpretations of
spectators’ faces.

Additional Projects
Jack Adam, Tiny Face, 2011, face
measurement app.

Rebecca Allen, Catherine Wheel, 1982,
computer-generated character.

Hayden Anyasi, StandardEyes, 2016,
interactive art installation.

Nobumichi Asai, Hiroto Kuwahara, and Paul
Lacroix, OMOTE, 2014, real-time tracking
and facial projection mapping.

Jeremy Bailey, The Future of Marriage,
2013, software.

Jeremy Bailey, The Future of Television, 2012,
software demo.

Jeremy Bailey, Suck & Blow Facial Gesture
Interface Test #1, 2014, software test.

Jeremy Bailey and Kristen D. Schaffer,
Preterna, 2016, virtual reality experience.

Zach Blas, Facial Weaponization Suite,
2011–2014, masks digitally modeled from
aggregate data.

Nick Cave, Sound Suits, 1992–, wearable
sculptures.

A. M. Darke, Open Source Afro Hair Library,
2020, 3D model database.

Marnix de Nijs, Physiognomic Scrutinizer,
2008, interactive installation.

Arthur Elsenaar, Face Shift, 2005, live
performance and video.

William Fetter, Boeing Man, 1960, 3D
computer graphic.

William Forsythe, Improvisation Technologies,
1999, rotoscoped video series.

Daniel Franke and Cedric Kiefer, unnamed
soundsculpture, 2012, virtual sculpture using
volumetric video data.

Tobias Gremmler, Kung Fu Motion
Visualization, 2016, motion data visualization.

Paddy Hartley, Face Corset, 2002–2013,
speculative fashion design.

Adam Harvey, CV Dazzle, 2010–, counter-
surveillance fashion design.

Max Hawkins, FaceFlip, 2011, video chat
add-on.

Lingdong Huang, Face-Powered Shooter,
2017, facially controlled game.

Jack Kalish, Sound Affects, 2012, face-
controlled instruments and performance.

Keith Lafuente, Mark and Emily, 2011, video.

Béatrice Lartigue and Cyril Diagne, Les
Métamorphoses de Mr. Kalia, 2014,
interactive installation.

David Lewandowski, Going to the Store, 2011,
digital animation and video footage.

Zach Lieberman, Walk Cycle / Circle Study,
2016, computer graphic animation.

Rafael Lozano-Hemmer, The Year’s Midnight,
2010, interactive installation.

Lauren McCarthy and Kyle McDonald,
How We Act Together, 2016, participatory
online performance.

Kyle McDonald, Sharing Faces, 2013,
interactive installation.

Christian Moeller, Cheese, 2003, smile analysis
software and video installation.

Nexus Studio, Face Pinball, 2018, game with
facial input.

Klaus Obermaier with Stefano D’Alessio and
Martina Menegon, EGO, 2015, interactive
installation.

Orlan, Surgery-Performances, 1990–1993,
surgical operations as performance.

Joachim Sauter and Dirk Lüsebrink, Iconoclast
/ Zerseher, 1992, eye-responsive installation.

Oskar Schlemmer, Slat Dance, 1928, ballet.

Karolina Sobecka, All the Universe Is Full
of the Lives of Perfect Creatures, 2012,
interactive mirror.

Elliott Spelman, Expressions, 2018, face-
controlled computer input system.

Keijiro Takahashi, GVoxelizer, 2017, animation
software tool.

Universal Everything, Furry’s Posse, 2009,
digital animation.

Camille Utterback, Entangled, 2015, interactive
generative projection.

Theo Watson, Autosmiley, 2010, whimsical
vision-based keyboard automator.

Ari Weinkle, Moodles, 2017, animation.

142 Code as Creative Medium

Readings
Greg Borenstein, “Machine Pareidolia: Hello
Little Fella Meets Facetracker,” Ideas for
Dozens (blog), UrbanHonking.com, January
14, 2012.

Joy Buolamwini and Timnit Gebru, Gender
Shades, 2018, research project, dataset,
and thesis.

Kate Crawford and Trevor Paglen,
“Excavating AI: The Politics of Images in
Machine Learning Training Sets, excavating.
ai, September 19, 2019.

Regine Debatty, “The Chronocyclegraph,” We
Make Money Not Art (blog), May 6, 2012.

Söke Dinkla, “The History of the Interface in
Interactive Art,” kenfeingold.com, accessed
April 17, 2020.

Paul Gallagher, “It’s Murder on the
Dancefloor: Incredible Expressionist Dance
Costumes from the 1920s,” DangerousMinds.
net, May 30, 2019.

Ali Gray, “A Brief History of Motion-Capture
in the Movies,” IGN, July 11, 2014.

Katja Kwastek, Aesthetics of Interaction in
Digital Art (Cambridge, MA: MIT Press, 2013).

Daito Manabe, “Human Form and Motion,”
GitHub, updated July 5, 2018.

Kyle McDonald, “Faces in Media Art,”
GitHub repository for Appropriating New
Technologies (NYU ITP), updated July
12, 2015.

Kyle McDonald, “Face as Interface,”
2017, workshop.

Jason D. Page, “History,”
LightPaintingPhotography.com, accessed
April 17, 2020.

Shreeya Sinha, Zach Lieberman, and Leslye
Davis, “A Visual Journey Through Addiction,”
New York Times, December 18, 2018.

Scott Snibbe and Hayes Raffle, “Social
Immersive Media: Pursuing Best Practices
for Multi-User Interactive Camera/Projector
Exhibits,” in Proceedings of the SIGCHI
Conference on Human Factors in Computing
Systems (New York: Association for
Computing Machinery, 2009).

Nathaniel Stern, Interactive Art and
Embodiment: The Implicit Body as
Performance (Canterbury, UK: Gylphi
Limited, 2013).

Alexandria Symonds, “How We Created a
New Way to Depict Addiction Visually,”
New York Times, December 20, 2018.

Alan Warburton, Goodbye Uncanny Valley,
2017, animation.

Notes
i. Nathan Ferguson, “2019: A Face Odyssey,”
Cyborgology, July 17, 2019, accessed July 27,
2019.

ii. Alan Warburton, “Fairytales of Motion,”
Tate Exchange video essay, April 24, 2019,
accessed July 27, 2019.

iii. See the Face Generator assignment.

iv. Ruha Benjamin, ed., Captivating
Technology: Race, Carceral Technoscience,
and Liberatory Imagination in Everyday Life
(Durham, NC: Duke University Press,
2019), 12.

143Assignments

S
yn

es
th

et
ic

 In
st

ru
m

en
t

144 Code as Creative Medium

Synesthetic Instrument
A machine for performing sound and image

Brief
Create an “audiovisual instrument” that allows a
performer to produce tightly coupled sound and
visuals. Your software should make possible the
creation of both dynamic imagery and noise/
sound/music, simultaneously, in real time.

You are challenged to create an open-ended
system in which sonic and visual modalities
are equally expressive. Its results should be
inexhaustible, deeply variable, and contingent on
the performer’s choices, and the basic principles
of its operation should be easy to deduce,
yet also allow for sophisticated expression.
Interactions with your instrument should
generate predictable results.

Assume your instrument receives input from the
actions and gestures of a performer. Will they
use a keyboard, mouse, multi-touch trackpad,
pose tracker, or a less common sensor? Select
(or construct) your instrument’s physical
interface with care, giving consideration to its
expressive affordances. Categorize the data
streams it provides: are these continuous values,
or changes in logical states? Do they have a
perceptible duration, and are they persistent or
instantaneous? Are they one-, two-, three-, or
four-dimensional?

Assume your instrument generates output for a
graphic display and audio system. Think through
the possibilities offered by different visual
variables like hue, saturation, texture, shape,

and motion, and different auditory elements
including pitch, dynamics, timbre, scales, and
rhythm. Link these sonic and visual elements
together by establishing mappings between
your system’s input and output. For example:
the faster the performer moves her cursor, the
brighter her cursor appears, and the higher the
pitch of a synthesized tone. Such mappings help
set up expectations that can be manipulated by
a performer to create contrast, tension, surprise,
and even humor.

Attune us to your instrument’s unique expressive
qualities by using it in a brief performance. One
suggestion for structuring this performance is to
begin with an expository demonstration of your
instrument’s interface, guiding the audience into
understanding how it operates before presenting
more complex material. The repetition and
subsequent elaboration of themes is also a
helpful compositional strategy.

Learning Objectives
• Review historical precedents in audiovisual

instrument design
• Explore ways to control and connect sound

and visuals
• Review and implement event-driven

programming
• Apply interaction design principles to the

development of performance instruments, with
special attention to a system’s responsiveness,
predictability, ease of use, and interface

Variations
• Instructors: require all students to use the same

type of physical interface (such as a game
controller, pressure-sensitive stylus, or barcode
reader). This will allow them to better contrast
their solutions.

• Develop a “QWERTY instrument” that is wholly
played through typed actions on a standard
computer keyboard. This simplified format can
helpfully limit your design to the use of discrete
inputs (button presses, rather than continuous
gestures), and discrete outputs (triggering pre-
recorded and pre-rendered media, rather than
synthesizing sounds and graphics through the
real-time modulation of continuous parameters).
Embed your project in a web page and publish
it online. Consider how the provenance of your
sounds and images can enrich your concept.

• For advanced students: Develop your project
with a pair of programming environments that
handle sound and image separately. Some
arts-engineering toolkits (like Max/MSP/Jitter,
Pure Data, SuperCollider, and ChucK) excel
at sound synthesis, while other development
environments (like Processing, openFrameworks,
Cinder, and Unity) have richer feature sets for
graphics. Signals can be shared between the
applications by means of a communications
protocol like OSC or Syphon.

• Mapping performance gestures to your
instrument’s control parameters is perhaps the
foremost design challenge of this assignment.
Body movements that feel logically simple may
produce hard-to-interpret sensor data; likewise,

145Assignments

small changes to your instrument’s control
parameters may have nonlinear perceptual
effects. Improve the intuitiveness of your
instrument’s mappings by incorporating a
tool for real-time regression, such as Rebecca
Fiebrink’s Wekinator or Nick Gillian’s Gesture
Recognition Toolkit.

• Create an instrument that will only be used by
one person. (This is at odds with commercial
agendas and corporatized HCI education,
in which the expectation is that design is
something done for the widest range of users.)

Making It Meaningful
Good instruments offer inexhaustible
possibilities for expression, composition, and
collaboration. To a performer, the value of an
instrument hinges on how well it supports the
creative feedback loop known as “flow.”i An
instrument that is responsive but crunchy can be
more gratifying than a device that easily begets
dazzling results. Hence, in this assignment,
the emphasis is on the suppleness of an
instrument’s interaction design and the range
of expression it makes possible (the performer’s
experience), rather than on the aesthetics of the
audiovisuals it produces.

A “North Star” for instrument design is to
create something “instantly knowable, yet
infinitely masterable.”ii Consider the pencil, or
the piano: its basic principles of operation are
simple enough for a child to deduce, yet one
can spend a lifetime using it and still find more

to say; sophisticated expressions are possible,
and mastery is elusive. From the standpoint of
systems design, our challenge is that ease of
learning and expressive range are antithetical
design requirements: optimize for one, and
the other suffers. In making an instrument for
simultaneous sound and image, this challenge is
compounded by another: expressive malleability
in one modality often comes at the expense of
rigidity in the other.

It is helpful to consider the typology of
audiovisual systems and the design strategies
they use. Sound visualization, for example, is
a common feature in desktop music players,
VJ software, and phonology tools. Principles of
image sonification underpin film scores, game
music, and some tools for the visually impaired.
The term “visual music,” used by creators of
some color organs and abstract films, can even
refer to a strictly silent medium, one comprised
solely of animated imagery with temporal
structures that are analogous to musical ones.
In the realm of computer-based performance
systems, designers have used a variety of visual
interface metaphors to control and represent
sound. “Control panel” interfaces, for example,
use knobs, sliders, buttons, and dials to govern
synthesis parameters, evoking the look of
vintage synthesizers. “Diagrammatic” interfaces,
such as scores and timelines, use the graphical
conventions of information visualization to
organize representations of sound along axes
like time and frequency. Others use “audiovisual

objects,” wherein a performer stretches,
manipulates, or knocks virtual objects together
in order to trigger or modulate corresponding
sounds. In “painterly interfaces,” gestural marks
performed on a 2D surface conjure and influence
a fine-grained aural material.

146 Code as Creative Medium

147Assignments

162 163

164

165

166

167

Captions
162. In the Web-based performance In C
(2015) by Luisa Pereira, Yotam Mann, and
Kevin Siwoff, a group of performers use mice
and keyboards to control the pace at which
their individual instruments advance through
a graphical score, producing highly variable
musical results.

163. Amit Pitaru’s Sonic Wire Sculptor (2003)
is a tablet-based system for authoring looping
scores. Melodies are represented by drawings
that curl around a cylindrical 3D space.

164. Psychic Synth (2014) by Pia Van Gelder
is a responsive audiovisual environment
in which a participant’s brainwaves are
captured by an EEG headset, in order to
establish an immersive biofeedback loop that
governs video projection, colored light, and
immersive sound.

165. Patatap (2012) by Jono Brandel and
Lullatone is a browser-based app for the
simultaneous performance of sound and
animated imagery. Each key on a standard
computer keyboard triggers a unique noise
and snappy animation.

166. Jace Clayton’s Sufi Plug Ins (2012) are
a suite of seven free tools that extend the
functionality of Ableton Live, a commercial
music software sequencer. These software-
as-art visual interfaces are designed to
support non-Western conceptions of sound,
such as North African maqam scales and
quartertone tuning. The interface is written in
the Berber language of Tamazight, using its
neo-Tifinagh script.

167. Orca (2018) by Hundred Rabbits is an
esoteric programming language and live-
coding interface for creating and performing
procedural sound sequencers.

Additional Projects
Louis-Bertrand Castel, Clavecin Oculaire
(Ocular Harpsichord), 1725–1740, proposed
mechanical audiovisual instrument.

Alex Chen and Yotam Mann, Dot Piano, 2017,
online musical instrument.

Rebecca Fiebrink, Wekinator, 2009, machine
learning software for building interactive
systems.

Google Creative Lab, Semi-Conductor, 2018,
gesture-driven online virtual orchestra.

Mary Elizabeth Hallock-Greenewalt,
Sarabet, 1919–1926, mechanical audiovisual
synthesizer.

Imogen Heap et al., Mi.Mu Gloves, 2013–
2014, gloves as gestural control interface.

Toshio Iwai, Piano – As Image Media, 1995,
interactive installation with grand piano and
projection.

Toshio Iwai and Maxis Software Inc.,
SimTunes, 1996, interactive audiovisual
performance and composition game.

Sergi Jordà et al., ReacTable, 2003–2009,
software-based audiovisual instrument.

Frederic Kastner, Pyrophone, 1873, flame-
driven pipe organ.

Erkki Kurenniemi, DIMI-O, 1971, electronic
audio-visual synthesizer.

Golan Levin and Zach Lieberman, The
Manual Input Workstation, 2004, audiovisual
performance with interactive software.

Yotam Mann, Echo, 2014, musical puzzle
game, website, and app.

JT Nimoy, BallDroppings, 2003–2009,
animated musical game for Chrome.

Daphne Oram, Oramics Machine, 1962,
photo-input synthesizer for “drawing sound.”

Allison Parrish, New Interfaces for Textual
Expression, 2008, series of textual interfaces.

Gordon Pask and McKinnon Wood,
Musicolour Machine, 1953–1957, performance
system connecting audio input with colored
lighting output.

James Patten, Audiopad, 2002, software
instrument for electronic music composition
and performance.

David Rokeby, Very Nervous System,
1982–1991, gesturally controlled software
instrument using computer vision.

Laurie Spiegel, VAMPIRE (Video and Music
Program for Interactive Realtime Exploration/
Experimentation), 1974–1979, software
instrument for audiovisual composition.

Iannis Xenakis, UPIC, 1977, graphics tablet
input device for controlling sound.

Readings
Adriano Abbado, “Perceptual
Correspondences of Abstract Animation and
Synthetic Sound,” Leonardo 21, no. 5 (1988):
3–5.

Dieter Daniels et al., eds., See This Sound:
Audiovisuology: A Reader (Cologne, Germany:
Walther Koenig Books, 2015).

Sylvie Duplaix et al., Sons et Lumieres: Une
Histoire du Son dans L’art du XXe Siecle
(Paris: Editions du Centre Pompidou,
Catalogues Du M.N.A.M., 2004).

Michael Faulkner (D-FUSE), vj audio-visual
art + vj culture (London: Laurence King
Publishing Ltd., 2006).

Mick Grierson, “Audiovisual Composition”
(DPhil thesis, University of Kent, 2005).

Thomas L. Hankins and Robert J. Silverman,
Instruments and the Imagination (Princeton,
NJ: Princeton University Press, 1995).

Roger Johnson, Scores: An Anthology of New
Music (New York: Schirmer/Macmillan, 1981).

Golan Levin, “Audiovisual Software Art:
A Partial History,” in See This Sound:
Audiovisuology: A Reader, ed. Dieter Daniels
et al. (Cologne, Germany: Walther Koenig
Books, 2015).

Luisa Pereira, “Making Your Own Musical
Instruments with P5.js, Arduino, and
WebMIDI,” Medium.com, October 23, 2018.

Martin Pichlmair and Fares Kayali, “Levels
of Sound: On the Principles of Interactivity
in Music Video Games,” in Proceedings of
the 2007 DiGRA International Conference:
Situated Play, vol. 4 (2007): 424–430.

148 Code as Creative Medium

Don Ritter, “Interactive Video as a Way of
Life,” Musicworks 56 (Fall 1993): 48–54.

Maurice Tuchman and Judi Freeman, The
Spiritual in Art: Abstract Painting, 1890–1985
(Los Angeles: Los Angeles County Museum
of Art, 1986).

John Whitney, Digital Harmony: On the
Complementarity of Music and Visual Art
(New York: Byte Books/McGraw-Hill, 1980).

John Whitney, “Fifty Years of Composing
Computer Music and Graphics: How Time’s
New Solid-State Tactability Has Challenged
Audio Visual Perspectives,” Leonardo 24, no.
5 (1991): 597–599.

Notes
i. Mihaly Czikszentmihalyi, Flow: The
Psychology of Optimal Experience (New York:
Harper Perennial Modern Classics, 2008).

ii. Golan Levin, “Painterly Interfaces for
Audiovisual Performance” (master’s thesis,
MIT, 2000).

Part Two: Exercises

150 Code as Creative Medium

Computing without a Computer

Ono’s Grapefruit
Browse the prompts in Yoko Ono’s Grapefruit
series, and, if possible, execute one.1
Contemplate giving instructions as a mode
of creative practice. Devise an instructional
painting in Ono’s style.

Wall Drawing #118
Execute Sol LeWitt’s Wall Drawing #118 (1971):
“On a wall surface, any continuous stretch of
wall, using a hard pencil, place fifty points at
random. The points should be evenly distributed
over the area of the wall. All of the points should
be connected by straight lines.”2

Conditional Design: The Beach
Organize into groups of four, and give each
person their own color marker. Execute “The
Beach” from the “Conditional Design Manifesto”
by Luna Maurer et al.: “Each turn, find the most
empty space on the paper and place a dot in the
middle of it.”3

Procedural Drawing
Develop your own procedural drawing rule set
in the spirit of Sol LeWitt or the prompts from
conditionaldesign.org. Have one or more of your
peers produce a drawing with your system.
Consider devising systems using other materials
such as tape or string.

Drawing Games
In pairs, play a game of Dots and Boxes (by
Édouard Lucas) and Sprouts (by John H. Conway
and Michael S. Paterson) to deepen your
understanding of rule-based drawing games.4

Zoom Schwartz Profigliano
In groups of five, play the rule-based
conversation game “Zoom Schwartz Profigliano,”
in which an ever-expanding vocabulary of
whimsical nonsense words establishes precise
rules for what can be spoken, to whom, when,
and how.5 (Photo: College of DuPage.)

Be the Computer I
Arrange the class in a grid configuration and
give each person a sheet of paper so that each
student is responsible for a pixel. One person
takes charge and programs the pixels by
showing the group a script or by giving them
direct commands.6

Be the Computer II
Write a simple program to create a static
drawing. Give your code to a peer, and (without
showing them your screen) ask them to predict
and hand-draw the result. When they are
finished, compare the computer’s drawing with
their hand-drawn work.

151Exercises

Human Fax Machine
In groups of two or four, devise a sound language
for describing how marks are made. You may
use a sound-making device (two spoons, a set
of keys) or your own mouth noises, so long as
you use no spoken words. Write down the code,
then split your group into “transmitters” and
“receivers,” with a visual barrier in between. Test
the system. A “transmitter” should take a simple
hand-drawn image and transmit it across the
barrier to the “receiver.” When finished, compare
the original with the transmitted image and
fix any problems in your system. Do this with
several images, and discuss.7

Additional References
Casey Reas, {Software} Structures, 2004, http://artport.
whitney.org/commissions/softwarestructures/text.html.

Basil Safwat, Processing.A4, 2013, http://www.basilsafwat.
com/projects/processing.a4/.

FoAM, notes for Mathematickal Arts workshop, 2011, https://
libarynth.org/mathematickal_arts_2011.

J. Meejin Yoon, “Serial Notations / Drift Drawings,”
2003, https://ocw.mit.edu/courses/architecture/4-123-
architectural-design-level-i-perceptions-and-processes-
fall-2003/assignments/problem1.pdf.

Notes
1. Yoko Ono, Grapefruit (London: Simon & Schuster, 2000).

2. Andrew Russeth, “Here Are the Instructions for Sol LeWitt’s
1971 Wall Drawing for the School of the MFA Boston,”
Observer, October 1, 2012, https://observer.com/2012/10/
here-are-the-instructions-for-sol-lewitts-1971-wall-drawing-
for-the-school-of-the-mfa-boston/.

3. Luna Maurer, Edo Paulus, Jonathan Puckey, and Roel
Wouters, “Conditional Design: A Manifesto for Artists
and Designers,” accessed April 14, 2020, https://
conditionaldesign.org/workshops/the-beach/.

4. Wikipedia, “Dots-and-Boxes,” http://en.wikipedia.org/wiki/
Dots_and_Boxes; Wikipedia, “Sprouts,” http://en.wikipedia.
org/wiki/Sprouts_(game).

5. David King, “Zoom Schwartz Profigliano,” 1998, https://
www.scottpages.net/ZSP-Rules-2012.pdf.

6. John Maeda, Creative Code (New York: Thames and Hudson,
2004), 216.

7. Brogan Bunt and Lucas Ihlein, “The Human Fax Machine
Experiment,” Scan (Sydney): Journal of Media Arts Culture 10,
no. 2 (2013): 1–26.

152 Code as Creative Medium

Graphic Elements

One with Everything
Explore your graphics toolset by drawing one of
each type of primitive it provides. For example,
you might draw a rectangle, ellipse, arc, line
segment, Bézier curve, polyline, and polygon.
Experiment with their options and parameters,
such as fill color, stroke weight, etc.

Quadrilateral Zoo
Write commands to plot the vertices of a
family of quadrilaterals: square, rectangle,
parallelogram, rhombus, trapezoid, dart,
and kite.

Draw Your Initials
Draw your initials with primitive shapes
and lines.

Braille Tool
Reproduce the Braille alphabet using filled and
unfilled circles. If you can, store a representation
of these patterns in an array, and create a tool
that allows a user to compose, print, and (with a
stylus) emboss Braille messages.

Coding Mondrian
Using code, reproduce a Mondrian painting, such
as Composition No. III, with Red, Blue, Yellow and
Black (1929). Pay attention to detail.

Coding Stadia II
Select and crop a small rectangular region
from Julie Mehretu’s painting Stadia II. Using
a program such as Photoshop, read out the
colors and coordinate data from this fragment.
Use this data to faithfully recreate the fragment
with shapes, lines, curves, and custom shape
functions.

Draw, Then Code
Spend 20 minutes drawing on paper: a self-
portrait, landscape, still life, or geometric design.
Create your drawing with adequate care and
detail. Now recreate your drawing using code.
(Image: p5.js Self-Portrait, a student project by
Zainab Aliyu, 2015.)

Kaleidoscope
Devise a small graphical motif. Write a program
that uses your toolset’s graphics transforms to
translate, reflect, and rotate copies of this motif,
in the manner of a kaleidoscope.

153

Iteration

Exercises

Simple Iteration: Seven Circles
Use iteration to copy the figure on the left, in
which seven circles are positioned across the
canvas. The position of each circle should be
computed using your loop’s counting variable.
Make sure the first circle is inset by a margin; it
should not lie on the edge of the canvas.

Transitioning Rectangles
Recall that any visual property can be linked to
a loop variable, not just position. Use iteration to
generate a series of rectangles. Your code should
simultaneously control several of the rectangles’
visual properties, including their position, height,
and fill color.

String Art Challenge
Use iteration to recreate the figure on the left.
Your code should draw exactly eight lines.

Mini-Calendar
Use iteration to render a row of visual elements:
one element for each of the days of the current
month. All of the elements should be drawn
identically, except for the one whose index
corresponds to the current day. Differentiate this
element in some way.

Receding Landscape
Use iteration to create a series of vertical
lines across the screen. Create the illusion
of a receding landscape by placing the lines’
endpoints more closely together at the top of
the canvas.

Lines to the Cursor
Use iteration to create an interactive display
featuring a series of ten lines. Each line should
connect the cursor to one of a series of points
distributed evenly across the canvas.

Color-Bar Gradient
Using iteration, generate a gradient that “lerps”
(linearly interpolates) from one fill color to
another across exactly 17 rectangles. Implement
some code that randomizes the two terminal
colors whenever the user clicks a button.

Dashed Line
Write a program that generates a dashed line
between two points. (You may not use a “ready-
made” dashed line.) Your dashes should always
have a fixed length, such as 10 pixels, so that
longer lines require more dashes. Connect one of
your line’s endpoints to the cursor.

154 Code as Creative Medium

Nested Iteration: Checkers
Create a checkerboard using a nested loop.
Recall that a checkerboard is an 8x8 grid of
alternating black and white squares, starting
with white in the top left corner.

Iteration with Functions
Write a function that encapsulates the code to
render a simple visual element (a leaf, face, etc.).
Give your function arguments that determine
where the element will be positioned. Using
iteration, call your function to display a grid of
these elements.

Stochastic Elements
Create an evocative composition in which an
iterative loop deposits small elements in random
locations around the canvas. These elements
might look like craters, potholes, pimples, ants,
chocolate chips, holes in Swiss cheese...

Interrupted Grid
Use nested iteration to generate a grid of visual
elements. Write code such that on each iteration,
with a small random probability, an alternative
element is occasionally drawn instead.

Geometric Progression
Generate a series of visual elements whose
dimensions exhibit a geometric progression.
The size of each element should be computed
by multiplying the size of the one before it by a
constant ratio. In the design at left, each circle is
1.3 times larger than the previous one inside it.

Moiré Patterns
Generate a set of parallel lines or curves, spaced
at narrow intervals. Overlap two copies of your
line set, differing by a small rotation, to create
a moiré pattern. Place some dimension of
variability, such as the line separation or rotation
angle, under interactive control.

Recoding Schotter
Schotter by Georg Nees (1968) is a classic
algorithmic artwork that depicts a gradient from
order to chaos across a 12x22 grid of squares. In
it, the squares’ orientations become increasingly
randomized towards the bottom of the page. Re-
code this work, paying attention to detail.

Hexagonal Grid
Write a custom function that draws a hexagon.
Using iteration, call this function to fill your
sketch with a grid of hexagons. For regular
hexagons, you may need to consult some
trigonometry.

155

Color

Exercises

Color Observation
Carefully observe the color of your shirt, your
table, the wall of your room, and the palm of
your hand. Proceeding exclusively by modifying
numbers in code, and without using a camera or
scanning device, reproduce these colors to the
best of your ability.

Overlapping Color
Overlap three semi-transparent circles, each
with a different color, to create regions of
overlapping colors. Explore the effects of
different colors and transparency values.
Experiment with different pixel transfer modes
(also called “blend modes”). Draw the circles
without outlines.

Constructing a Gradient
Create a smooth gradient between two colors.
Hint: use iteration to render many thin, adjacent
parallel lines, each with subtly different colors.
How does your choice of color model (RGB or
HSB) affect the result?

Color Wheel
Using the HSB color model, create a program
that displays every hue on the screen in the form
of a color wheel.

Threshold of Perception
Create a composition showing the smallest
interval between colors that you can distinguish.
One possible composition is a filled circle
in front of a flat background, such that the
colors of the background and circle are almost
imperceptibly different.

Interactive Complement
Complementary colors are 180° degrees apart
on the color wheel. Split the canvas into two
equal-sized rectangles, side by side. Using the
HSB color model, create an interaction in which
one rectangle’s color is controlled by the cursor
position and the other rectangle contains the
complement of this color.

Accented Palette
Create a color scheme or palette with a
dominant “base color” and an “accent color”
formed from its complement. Devise a method
of randomly sampling this palette such that the
base color is selected roughly 75% of the time.
Fill a grid of squares with colors selected using
this method.

Split Complements
A color’s “split complements” are a pair of
colors just adjacent (±15–30°) on the color
wheel. Create an interactive sketch that displays
swatches of the split complements for a color
selected by the user.

156 Code as Creative Medium

Josef Albers Color Relativity I
Study Josef Albers’s color relativity exercises
and write a program, like the one shown at left,
that makes three colors look like four.1 Control
the components of the third color (in the spots)
using your cursor. Under what conditions do the
spots look the same or different?

Josef Albers Color Relativity II
Using similar techniques as above, create a
sketch in which four colors look like three.
Demonstrate the relativity of color by duplicating
the spots’ colors in a location where they can be
more easily compared. Can you write a program
to generate novel color sets that always fulfill the
four-look-like-three condition?

Color Inspector
Load and display a colorful image. Draw three
ellipses to the screen and fill them with the
red value, the green value, and the blue value,
respectively, of an image pixel under the cursor.

Color Survey
Create an interface for specifying a color,
using sliders to control its red, green, and blue
components. Ask some friends to use your tool
to create the colors mauve, teal, and plum. Save
the data they create. In another sketch, load and
display this data to compare their opinions.

Palette from Photo
Select a photo. Write a program that derives
an optimal five-color palette from your chosen
image. (There are many ways to do this, but one
of the most effective is k-means clustering.)
If you can, use your palette to generate
“separations” of your original image, like for
silkscreening or risograph printing.

Additional References
Tauba Auerbach, RGB Colorspace Atlas (2011), http://
taubaauerbach.com/view.php?id=286.

Carolyn L. Kane, Chromatic Algorithms: Synthetic Color,
Computer Art, and Aesthetics after Code (Chicago: University
of Chicago Press, 2014).

Rune Madsen, http://printingcode.runemadsen.com/
lecture-color/.

Rune Madsen, https://programmingdesignsystems.com/
color/color-models-and-color-spaces/index.html.

Rune Madsen, https://programmingdesignsystems.com/
color/perceptually-uniform-color-spaces/index.html.

Robert Simmon, “Subtleties of Color,” NASA Earth
Observatory: Elegant Figures, last modified August
5, 2013, https://earthobservatory.nasa.gov/blogs/
elegantfigures/2013/08/05/subtleties-of-color-part-1-of-6/.

Note
1. See Ticha Sethapakdi, The Colorist Cookbook (self-
pub., 2015), https://strangerbedfellows.files.wordpress.
com/2015/12/the-colorist-cookbook.pdf.

157

Conditional Testing

Exercises

Left or Right
Create a sketch in which a text display indicates
whether the cursor is on the left side or the right
side of the canvas.

Billiard Ball
Create a sketch with a moving ball that bounces
off the edges of the canvas. Take care that
the ball never appears to overlap the edge of
the canvas.

One-Person Pong
Create a sketch that recreates the game of Pong
for a single user. Can you add a scoring system?

Choose Your Own Adventure
Create a branching narrative experience in which
clicking in different regions of the screen leads
to different rooms, situations, and outcomes.
Enhance the experience with sound effects (e.g.,
door latches) and ambient audio recordings.

State Machine I
Place a white square on a gray background.
Create an interaction wherein a click inside the
square turns it black, after which it stays that
way. (In this exercise and those that follow,
make sure that clicks outside the square have
no effect.)

State Machine II
Place a white square on a gray background.
Create an interaction wherein each click in the
square flips its color. It should flip from white to
black (if it is white) or from black to white (if it
is black).

State Machine III
Place a white square on a gray background.
Create an interaction wherein two clicks in
the square are required to turn it from black to
white, but three clicks are required to turn it
from white to black.

State Machine IV
Place a white square on a gray background. Turn
the square into a button with a “hover” state:
make it white when inactive, yellow when the
user is hovering over it (without having clicked),
and black when the user is actively holding the
mouse button down inside of it.

158 Code as Creative Medium

Unpredictability

Coin Toss
Create a sketch for a coin that is “tossed” every
time the mouse button is clicked. Your coin
should be evenly weighted so that heads and
tails have the same likelihood of appearing. Test
your program over ten tosses. What were the
observed frequencies of heads and tails?

Roll the Dice
Create an app in which a virtual die is “rolled”
every time the mouse is clicked. Your die should
be evenly weighted, and each result should
have an even 1-in-6 chance of appearing. Test
your program over 18 clicks. How well does it
perform? Modify your code so that it rolls
six dice.

Exquisite Corpse Machine
Ask some friends to prepare drawings of heads,
torsos, and legs. Make sure these parts are able
to line up interchangeably at the neck and waist.
Create an “Exquisite Corpse” generator in which
these parts are randomly recombined whenever
a button is clicked. (Image: Tatyana Mustakos)

Intermittent Events
Create a time-based sketch in which a brief
event (such as a sound or animation) is
triggered sporadically and unpredictably, with
a very low probability. You may also display a
scrolling timeline showing a history of when
the event occurred.

Order to Chaos
Make an interactive composition that depicts
“order” when the cursor is on the left side of the
canvas, and “chaos” when it is on the right. The
amount of order or chaos (entropy) should vary
smoothly according to the cursor position. The
map() and constrain() functions may be helpful.

Drunk Walk I: Brownian Motion
Create a sketch in which a small 2D element
travels erratically from one moment to the next,
leaving a trail across the canvas as it moves.
At every timestep, it should update its current
position with a small random displacement in
both X and Y.

Drunk Walk II: Random Lattice Walk
Create a sketch in which a small element travels
erratically from one moment to the next, leaving
a trail as it moves. At every timestep, it should
have a 1-in-4 chance of moving up, down, left, or
right from its previous position.

Drunk Walk III: Smoothed Noise
The smoothed quality of Perlin noise allows you
to make an animation that is unpredictable, but
also has temporal coherence. Use Perlin noise
to dynamically regulate the size and position
of a circle. Observe the effects of changing the
parameters to the noise function.

159Exercises

10 PRINT
In each cell of a square grid, choose with random
probability to place a diagonal line pointing up
or down. The fascinating maze-like patterns
that arise are discussed at length in the book 10
PRINT CHR$(205.5+RND(1)); : GOTO 10 by Nick
Montfort et al.1

Duotone Truchet Tiling
Create a set of four duotone “Truchet tiles,”
each with two quarter-circles connecting the
midpoints of adjacent sides. Be sure to create all
possible orientations and all possible colorings
(corners light or corners dark). Randomly place
these tiles in a square grid, enforcing continuity
of color.

Hitomezashi Sashiko Stitching
Randomly label the columns and rows of a grid
with 0s and 1s. For each column, draw a vertical
sequence of alternating dashes and gaps,
beginning with a dash (for columns labeled 1)
or a gap (for columns labeled 0). Similarly, draw
horizontal sequences of dashes and gaps for the
rows. Observe the resulting patterns.2

Noise Mountains
Generate some mountains by creating a series
of parallel lines with no spacing between them,
spanning from the bottom of the screen to an
unpredicable height. Use a Perlin noise function
to determine the height of each line.

Imaginary Islands
Use a two-dimensional Perlin noise function to
generate a map of imaginary islands. For every
pixel: if the value of the noise function is below
some threshold value, color the pixel blue (for
water); if it is higher than the threshold, color it
brown (for land).

Recoding Molnár’s Interruptions
Carefully study some reproductions of the
computational plotter work Interruptions (1968–
1969) by Vera Molnár.3 Note how it consists of
a grid of lines whose orientations have been
randomized. Some lines are also missing, in
patches. Write down ten additional observations
about the work. To the best of your abilities,
write a program to “re-code” Interruptions. Write
a few sentences describing how your version
succeeds or falls short.

Notes
1. 10 PRINT CHR$(205.5+RND(1)); : GOTO 10, ed. Nick
Montfort et al. (Cambridge, MA: The MIT Press, 2012).

2. See Annie Perkins, tweet of March 29, 2020, https://
twitter.com/anniek_p/status/1244220881347502080.

3. Vera Molnár, Interruptions, plotter artwork, 1968–1969,
http://dam.org/artists/phase-one/vera-molnar/artworks-
bodies-of-work/works-from-the-1960s-70s.

160 Code as Creative Medium

Arrays

Living Line I
Create an interaction that stores the past 100
mouse positions and displays them as a polyline.
Store the mouse data in three different ways: in
two 1D arrays (one for X, one for Y); in one 2D
array; and in an array of Point2D objects.

Living Line II
Create an interaction that stores the past
100 mouse positions and displays this path as
a polyline. Move an animated ellipse along this
path. When it reaches the end, return it to
the start and repeat, or have it travel in the
other direction.

Living Line III
Create a line using the past 100 mouse
positions, as above. Bring your line to life by
progressively adding some randomness to
each point.

Calligraphic Polyline
Create a sketch that stores the past 100 mouse
positions. Draw a line between each point and
the one previous to it. Make the thickness of
this line inversely proportional to the distance
between each pair of points, so that faster marks
make thinner lines.

Animated Walk Cycle
Load each frame of an animated walk cycle
into an array of images, and loop through these
to display the character in motion. When a
button is pressed, reverse the playback of the
animation. (Image from Eadweard Muybridge,
Animals in Motion, 1902.)

Plant the Flag
A bumpy “landscape” or terrain, consisting of an
array of height values, has been provided for you.
Write code that searches through this array and
draws “flags” on the peaks (i.e., local maxima).

Longest Line Search
Write a program that draws straight lines when
the user clicks and drags. Color the longest
line red.

Reordering Rectangles
Create a program that stores the coordinates for
some rectangles in an array. Reading from this
array, your program should paint the rectangles
over each other as they are rendered. Write code
to reverse the array. Sort the rectangles from
right to left. Sort the rectangles by their area.

161

Time and Interactivity

Exercises

Eyes Following Cursor
Draw one or more eyes with pupils that follow
the cursor. If you can, constrain each pupil to
stay within its eyeball.

Fuse (or Progress Bar)
Program a virtual fuse that takes precisely five
seconds to burn. Trigger an interesting event
when it finishes, such as fireworks or a volcanic
eruption. Consider alternate “skins” to tell a
different story with the code for your fuse: a
progress bar, a balloon inflating (and bursting).

Ripples in a Pond
Create a program in which animated circular
“ripples” emanate outward from the cursor each
time the mouse button is clicked. Consider the
speed at which your ripples expand. Implement
your ripples in an object-oriented coding style.

Rain Catcher
Using code, animate a rainy day. Raindrops
should appear from beyond the top of your
screen and fall at random intervals. (It may
be helpful to create a raindrop class.) Create
a simple game in which the user can “catch”
raindrops that fall close to the cursor.

Abstract Typewriter
Create an expressive keyboard-based
performance instrument. Each key should
trigger a different animation, image, or
sound. Carefully consider the aesthetics of
the experience of playing your system. For
inspiration, try Patatap, an audiovisual keyboard
app by Jono Brandel.

Easing: Filtering a Variable
Objects rarely move at a constant speed in the
real world. Create a sketch in which an ellipse
follows the position of the cursor but decelerates
on approach. This requires an easing function or
a filter for the mouse position values.

Smoothing Data
Create a polyline by storing and displaying a
sequence of cursor positions. Now smooth it by
progressively averaging each point along the line
with its neighbors. Give consideration to how
you handle the line’s terminal points.

Audio-Sensitive Animation
Create graphics that respond to the amplitude
of microphone sounds. For example, you might
illustrate the sound with a sleeping animal
that is awakened by loud noises, or a face that
appears to be voicing the microphone sound.
Audio waveforms should be a starting point, not
an end.

162 Code as Creative Medium

Typography

Ransom Letter
Create a sketch to display a brief text in which
each letter is individually set with a random
typeface and font size.

One-Line Typewriter
Create a sketch that accumulates and displays
a string of letters as they are typed. For an
additional challenge, delete characters when the
backspace key is pressed.

Dynamic Text
Choose a word describing a bodily action, such
as “grow,” “shiver,” or “jump.” Animate this
word on your screen in a way that represents its
meaning. For example, the word “grow” could
become larger over time.

Responsive Text
Assign an interactive behavior to a word, such as
“avoid” or “tickle,” that expressively defines its
personality relative to the cursor.1

Scrolling Headlines (Chyron)
Choose a series of recent news headlines and
write a program that displays them scrolling
along the bottom of the screen. For an
additional challenge, fetch the latest headlines
automatically using a news API.

Split-Flap Display (Word Ladder)
Curate a list of words that all have the same
number of letters. Create a display that
interpolates from one word to the next, in
the manner of a split-flap airport sign, by
iterating through the intermediate letters in
alphabetical order.

Word Finder
Typeset a brief text, such as a poem or email.
Create a program that locates instances of a
“word of interest” in that text. Your program
should perform a visual treatment of that word,
such as highlighting, underlining, or redaction.2

Letterform Collage Tool
Create a tool that allows a user to make abstract
collages or concrete poetry with letterforms.
The user should be able to select a letter with
the keyboard and then place it using the mouse.
Save three compositions made with your tool.

163Exercises

Procrustean Typography
In Greek mythology, Procrustes stretched or cut
different people to make them all fit in a certain
iron bed. You will do the same with type. Create
a program that captures words typed by the user
and adjusts their font size so that they always fit
the precise width of the canvas.

Text along a Curve
Set text along a curve, writing code to position
each letter. If you can, orient each letter so that it
is locally perpendicular to the curve.3

Glyph Hacking: Playing with Outlines
In this exercise you will load a typeface, modify
its characters, and save out a new font of your
own. Identify a method for loading font outlines
into your preferred programming environment,
such as by converting a TTF typeface to SVG
using FontForge, or by accessing glyph contours
directly with textToPoints() (in p5.js), opentype.
js, the Rune.Font plugin4 (in Rune.js), or the
Geomerative library5 (in Java Processing). Using
code, create a treatment for all of the letters
in the alphabet, such as making them puffy or
spiky. Name your new font, and use your font
to typeset its name. If you can, export your new
glyphs to .ttf or another font format when you
have finished.

Tiny Word Processor
Using a fixed-width font, create a word
processor that allows a user to type characters
into a field of cells. Provide a text cursor whose
position can be moved with the arrow keys and
mouse. Implement word-wrapping, deleting
(with the backspace key), and text file exporting.

ASCII Vision
Write a program to generate an ASCII art
representation of an image. To do this, you’ll
need a sequence of characters that represents
different brightness values in an image. A
common character ramp for representing 10
levels of grey is “@%#*+=-:. “6

Notes
1. Adapted from Casey Reas and Ben Fry, “Typography,”
https://processing.org/tutorials/typography/.

2. The text in the poem is from Sonia Sanchez, “This Is Not a
Small Voice” (1995), https://poets.org/poem/not-small-voice.

3. Daniel Shiffman, “Strings and Drawing Text,” https://
processing.org/tutorials/text/.

4. Rune Madsen, “Typography,”http://printingcode.
runemadsen.com/lecture-typography/.

5. Ricard Marxer, “Geomerative Library,” http://www.
ricardmarxer.com/geomerative/.

6. Paul Bourke, “Character Representation of Greyscale
Images,” http://paulbourke.net/dataformats/asciiart/.

164 Code as Creative Medium

Curves

Butt Generator
Write a program that uses arcs or Bézier curves
to generate images of one or more butts.1

Parabola
A parabola is a curve whose formula is y=ax²,
where the variable a is some constant of your
choice. Write a program that plots a parabola.

One Circle, Three Ways
Plot a circle (from scratch) three different ways:
use the trigonometric functions sin() and
cos() to plot a series of points; approximate a
circle with four Bézier curves; and construct a
circle with “turtle graphics,” using a series of
alternating forward steps and small rotations.2

Continuity of Bézier Curves
Create a curve by joining two Bézier curves.
Now ensure that the combined curve is “C2
continuous,” with no visual discontinuities at the
point where its components are joined. In other
words, there should be continuity of position,
tangent slope, and curvature.

Phyllotaxis
Use turtle graphics to generate a phyllotactic
spiral.3 Start your turtle at the center of the
canvas. At each step, your turtle should draw
a small element; move outwards by a slowly
increasing amount; and rotate its orientation by
the “Golden Angle,” ~137.507764°.

Lissajous
Lissajous curves are useful parametric functions
of the form x=cos(a*t); y=sin(b*t);, where a
and b are typically small whole numbers. Use
the mathematics of Lissajous curves to plot the
movements of an animated element.

Spiral
Write a program that draws a spiral. Before
you begin, research different types of
spirals, such as Archimedes’s spiral (the
radius of which grows arithmetically) and
the logarithmic or equiangular spiral (whose
radius grows geometrically). Consider different
implementations, such as explicitly plotting your
spiral using polar equations, implicitly rendering
it by summing small differences (e.g., go
forward, turn slightly, repeat), or approximating
it piecewise with circular arcs.

165Exercises

Polar Curve
Write a program to display a cardioid, epicycloid,
hippopede, or other polar curve4 whose equation
takes the form r = f(theta). The identities
x=rcos(theta) and y=rsin(theta) may be
helpful. Use the cursor to control parameters of
the curve in real time.

Fourier Synthesis
In Fourier synthesis, complex waveforms are
made by summing up sine waves of different
amplitudes and frequencies. For example,
a square wave can be approximated by the
sum: sin(x)+sin(3x)/3+sin(5x)/5+sin(7x)/7....
Generate a square wave with this technique.

Osculating Circle
Every point on a curve has a local radius of
curvature: the radius of the osculating circle that
best approximates the curve at that point. Write
a program that displays the osculating circle for
points along a mark drawn by the user. You can
approximate this by computing a circle from
three consecutive points along the mark.

Circle Morphing
Create a program that interpolates between a
circle and a triangle.5

Shaping Functions
“Shaping functions” are indispensable in
generating and altering signals for aesthetic
purposes. Also known as tweens, interpolation
curves, bias functions, easing curves, or unit
generators, these functions are typically
designed to receive and produce values between
0 and 1. Use a collection of shaping functions
(such as p5.func by Luke DuBois, or Robert
Penner’s Easing Functions) to create nonlinear
relationships between time and position (to
make animations) or between position and color
(to make interesting gradients).6

Notes
1. Inspired by Le Wei, “Butt Generator,” accessed April 11,
2020, http://www.buttgenerator.com/.

2. Yuki Yoshida, “Drawing a Circle Code Repository,” accessed
April 11, 2020, https://github.com/yukiy/drawCircle.

3. Golan Levin, “Turtle’s Phyllotactic Spiral,” accessed April 11,
2020, http://cmuems.com/2015c/deliverables/deliverables-
09/#spiral.

4. Mathworld, “Curves,” accessed April 11, 2020, http://
mathworld.wolfram.com/topics/Curves.html.

5. See Dan Shiffman, “Guest Tutorial #7: Circle Morphing
with Golan Levin,” The Coding Train, October 25, 2017, video,
https://www.youtube.com/watch?v=mvgcNOX8JGQ.

6. Luke DuBois, “p5.func,” accessed July 27, 2020, https://
idmnyu.github.io/p5.js-func/; Robert Penner, “Easing
Functions,” accessed July 27, 2020, http://robertpenner.com/
easing/.

166 Code as Creative Medium

Shapes

Make a Star
Plot the vertices of a regular 10-sided polygon,
using the trigonometric functions sin() and
cos() in the same way that you might generate
a circle. Modify your code to generate a star by
alternating long and short radii.1

Random Splat
Plot the vertices of a many-sided polygon, using
the functions sin() and cos() in the same way
that you might generate a circle, but compute
the position of each point with a radius that is
slightly randomized. How closely can you make
the result resemble a drop of ink?2

Connect the Dots
The numbers below define the vertices of a
polygon. Write code that connects the dots to
plot the shape. x={81, 83, 83, 83, 83, 82, 79,
77, 80, 83, 84, 85, 84, 90, 94, 94, 89, 85,
83, 75, 71, 63, 59, 60, 44, 37, 33, 21, 15,
12, 14, 19, 22, 27, 32, 35, 40, 41, 38, 37,
36, 36, 37, 43, 50, 59, 67, 71}; y={10, 17,
22, 27, 33, 41, 49, 53, 67, 76, 93, 103, 110,
112, 114, 118, 119, 118, 121, 121, 118, 119,
119, 122, 122, 118, 113, 108, 100, 92, 88,
90, 95, 99, 101, 80, 62, 56, 43, 32, 24, 19,
13, 16, 23, 22, 24, 20};

Axis-Aligned Minimum Bounding Box
Given a 2D shape represented by a set of points,
compute and plot its “bounding box”: a useful
rectangle defined by the leftmost, rightmost,
highest, and lowest points on the shape’s
contour. Create an interaction in which the
shape is displayed differently if the cursor enters
its bounding box.

Computing the Centroid
Given a 2D shape represented by a set of points,
compute and plot the “centroid” of its outline—
the location whose x-coordinate is the average
of the x-coordinates of the points, and whose
y-coordinate is the average of the y-coordinates
of the points.

Computing the Perimeter
Given a 2D shape represented as a set of points,
calculate the length (or perimeter) of its outline.
To do this, add up the distances between every
pair of consecutive points along its boundary.
Don’t forget to include the distance from the last
point back to the first one.

Computing the Area
Given a simple (non-self-intersecting) 2D
shape whose points are stored in arrays x[] and
y[], calculate its area. This can be done using
Gauss’s area formula, or “shoelace algorithm,”
which sums, for all points i, the products
((x[i+1] + x[i]) * (y[i+1] - y[i]))/2.0.

167Exercises

Shape Metrics: Compactness
One of the simplest shape metrics is
“compactness” (or isoperimetric quotient), which
describes the extent to which a shape does
or doesn’t sprawl. Often used in redistricting
to avoid gerrymandering, compactness is a
dimensionless, scale-invariant, and rotation-
invariant quantity.3 It is computed by taking
the ratio of a shape’s area to its squared
perimeter. Compute the compactness of the
provided shape. Compare this value with the
compactness of some other shapes.

Detecting Points of High Curvature
Given a 2D shape represented as a set of points,
we can estimate the “local curvature” along
the shape’s boundary by computing the angle
between consecutive trios of points. Using the
provided shape, write code to determine which
points have especially high curvature (i.e. the
fingertips) and mark them with a colored dot.
Hint: Use the dot product to compute the angles,
and the cross product to distinguish positive
curvature (convexities) from negative curvature
(concavities).

Hand-Drawn Graphics Library
Create a set of functions for rendering basic
shapes with a hand-drawn feel. At a minimum,
your library should provide functions for drawing
line segments, ellipses, and rectangles.

Blob
Using any means you prefer, design and animate
an expressive 2D blob. For example: you could
create a closed loop of Bézier curves; trace the
contours of metaballs (implicit curves) using
Marching Squares; calculate a Cassini ellipse,
cranioid, or other parametric curve; or simulate a
smooth ropelike contour using Verlet integration.

Notes
1. Adapted from Rune Madsen, “Shape: Procedural Shapes,”
Programming Design Systems, accessed July 6, 2020, https://
programmingdesignsystems.com/shape/procedural-shapes/
index.html.

2. Adapted from Madsen, “Shape: Procedural Shapes.”

3. Wikipedia, s.v. “Compactness measure of a shape,” last
modified June 22, 2020, https://en.wikipedia.org/wiki/
Compactness_measure_of_a_shape.

168 Code as Creative Medium

Geometry

Midpoint of a Line Segment
Write a program that draws two random points
(A and B) whenever a button is pressed. Connect
these points with a line segment. Calculate the
midpoint of this line segment, and place a dot
there. Place an additional circle one-third of the
way from A to B.

Intersection of Two Rectangles
Write a program that draws two randomly sized,
randomly placed rectangles whenever a button
is pressed. If these rectangles overlap, locate the
new rectangle that represents their overlapping
region and draw its diagonals.

Construction of a Perpendicular
Write a program that draws a line from the
center of the canvas to the cursor. Construct a
second line that starts at the cursor, is 50 pixels
long, and is perpendicular to the first line.

Parallel Polyline (Offset Curve)
Write a program that stores cursor points as
a user draws. Connect these points with a
polyline. Use geometry to calculate another
polyline, which is offset everywhere from the
user’s drawing by a distance of 50 pixels.

Compass Orientation
Store the locations of the two most recent
mouse clicks and draw a line between them.
Using the atan2() function, compute the angular
orientation of this line. Display this angle in
degrees, and label it with the nearest compass
direction (N, NE, E, SE, S, SW, W, NW).

Angle between Three Points
Write a program that computes the angle
between three points: two randomly placed
points, A and B, and the mouse cursor, C. Hint:
Use the dot product to compute the angles, and
use the cross product to distinguish positive
from negative curvature.

Distance from a Point to a Line
Write a program that creates a random line
segment whenever a key is pressed. Compute
and display the shortest distance between this
line and the cursor. Place a dot at the point on
this line that is closest to the cursor.1

Intersection of Two Line Segments
Write a program that creates two random
line segments whenever a button is pressed.
Calculate the intersection point of these two line
segments, and if it exists, draw a dot there.2

169Exercises

Centroid of a Triangle
Construct a triangle from three random points
whenever a button is pressed. Draw lines (called
“medians”) to connect the midpoints of each
side to its opposite vertex. At the intersection of
these medians is the triangle’s centroid. Place a
dot there.

Circle from Three Points (Circumcenter)
Construct a random triangle whenever a button
is pressed. Generate a circle that passes
precisely through all three of its vertices. The
center of this circle is called the circumcenter
of the triangle. Place a dot there. Note: the
circumcenter is not always inside the triangle.3

Orthocenter of a Triangle
The “altitude” of a triangle is a line that is
perpendicular to a given side and passes
through the opposite vertex. Write a program
that constructs a triangle from three random
points whenever a button is pressed. Calculate
and display the triangle’s three altitudes. The
orthocenter of this triangle is located at the
intersection of its altitudes. Place a dot there.
Note: for most triangles, the altitudes will not
pass through the midpoints of the sides.

Incenter of a Triangle
The incenter of a triangle is located at the
intersection of the angle bisectors of a triangle’s
three corners. Write a program that generates
a random triangle whenever a button is
pressed and places a dot at its incenter. (The
incenter also happens to be the center of a
circle inscribed inside the triangle, called the
incircle; its radius is obtained by dropping a
perpendicular line from the incenter to any of
the triangle’s sides. If you can, draw the
triangle’s incircle.)

Notes
1. Paul Bourke, “Points, Lines, and Planes,” 1988–2013, http://
paulbourke.net/geometry/pointlineplane/.

2. Bourke, “Points, Lines, and Planes.”

3. Paul Bourke, “Equation of a Circle from 3 Points (2
Dimensions),” January 1990, http://paulbourke.net/geometry/
circlesphere/.

170 Code as Creative Medium

Image

Collage Machine
Collect a directory of images. Write a program
that uses these to generate collages of images.
Include some unpredicability within it so that it
generates a different collage each time it runs.

Color of a Pixel
Display an image. Create an interactive system
that continually fetches the color of the pixel
under the mouse as it passes over this image.
Use this color to fill a shape drawn to the screen
as the mouse is moved around.

Subsample and Downsample
Write a program that pixelates an image to
produce a low-resolution version. Begin by
subsampling the image (destination pixels are
selected from the original). Then, downsample
the image (destination pixels are local averages).

Random Dot Dithering
Load an image into memory and fetch the
brightness of a pixel in a random location.
Generate a random number between 0 and 255;
if it is greater than the brightness of the pixel,
draw a black dot at a corresponding location on
the canvas. Repeat as the picture emerges.

Searching for the Brightest Point
Display the live video feed from your webcam
to the screen and process the pixels to find the
brightest point in the image. Place an indicator
at the location of this pixel.

Image Averaging
Collect ten or more images labeled with the
same word or concept, such as “apple,” “sunset,”
or “clock.” Ensure that all of the images have
the same pixel dimensions. Compute a new
image that is the pixelwise average of the
collection, as a way to visualize regularities in
the representation of that concept.

Edge Detector (Sobel Filter)
Write a program that uses a Sobel filter to
detect and display the edges in an image. If you
can, compute the strength and orientation of
these edges.

Pixel Sort
Sort the pixels of an image by brightness. Then
repeat the exercise, but sort by hue. For tips, see
Dan Shiffman’s “Coding Challenge #47: Pixel
Sorting in Processing” in his Coding Train video
of December 21, 2016.

171

Visualization

Exercises

Text Message Isotype
Collect the text messages that you sent
and received over the past week. Count and
categorize these messages according to person,
topic, or mood. Create an isotype visualization to
represent this data pictorially.1

Temperature Timeline
Download a dataset of the average monthly
temperatures where you live. Visualize this
data in a chart showing time on the x-axis and
temperature on the y-axis. Make three versions
of the graph, showing the data as points, as
vertical bars, and as data points connected with
a curved line.2

Pie Chart
Write code to generate a pie chart that displays
what you spent on breakfast, lunch, dinner, and
coffee yesterday. You will need to use a function
that renders a filled arc. Load the data from
an external file in a well-structured format like
JSON or CSV. Make sure your chart has a key.

Small Multiple of Radar Charts
Take a “Big Five” personality quiz to (ostensibly)
quantify your conscientiousness, agreeableness,
neuroticism, openness, and extraversion.3
Generate a radar chart to visualize this
multivariate data. Ask some friends to take the
quiz, and create a trellis plot (or “small multiple”)
that presents their personality charts side
by side.

Path Plotting I
Using a smartphone app such as OpenPaths
or SensorLog, record your GPS location data
for a duration of at least one week. Export the
latitude and longitude data to a CSV file. Write
code to load and visualize the paths of your daily
journeys. What observations can you make?

Path Plotting II
Reuse the location dataset from the previous
exercise and visualize it in a way that is not
a map. Consider displaying information such
as path lengths or speed, frequency of visits
to a particular location, distance traveled per
day, etc.

Dot Map
The “Rat Sightings” dataset from NYC
OpenData lists all of the complaints about
rats made to New York City’s 311 response
center since 2010. Write a program to map this
geolocated data by representing each complaint
as a single dot.4

Heat Map
Write a program to display the Rat Sightings
data as a spatial heat map. This presents two
challenges, as you will need to: design a density
function that represents the density of dots in
a map as a continuous field, and select a color
palette that represents the intensity of this field.

172 Code as Creative Medium

Social Network Graph
Develop a “force directed graph” to visualize
a social network, in which individuals are
represented as nodes and their relations as
links, and the layout is governed by a simulated
particle system. Use this to visualize the
community of 62 bottlenose dolphins living off
Doubtful Sound, New Zealand, as compiled by
Lusseau et al.

Social Network Matrix
A symmetric adjacency matrix visualizes
social interactions in a group. Individuals are
listed along a table’s rows and columns, and
interactions between each pair are quantified
in the cells. Create such a visualization for the
family of wild monkeys observed by Linda Wolfe
as they sported by a river in Ocala, Florida.

Real-Time Data Display
Locate a real-time Internet data stream such as
that published by a sensor or an API (weather,
stock prices, satellite locations). Create a
program that displays this data in an evocative
way. The example here shows the location of
the International Space Station, available from
open-notify.org.5

Web Scraping
Write a program to exhaustively “scrape” a
collection of online images. For example, you
might automate a process to download images
of every product offered by a certain vendor.
Write a second program to display your
images in a grid. How else could you organize
the collection?6

One Dataset, Four Ways
Visualize the Slate USA Gun Deaths dataset
(2013) in four different ways: a map, a timeline,
a bar chart based on age, and a fourth method
of your choice. If you can, provide an interaction
that allows a user to zoom, sort, filter, or query
the data. Write about how the different displays
provide different insights.7

Notes
1. Otto Neurath, International Picture Language: The First
Rules of Isotype (London: K. Paul, Trench, Trubner & Company,
Limited, 1936).

2. Ben Fry, “Time Series,” Visualizing Data: Exploring and
Explaining Data with the Processing Environment, chap. 4
(Cambridge, MA: O’Reilly Media, Inc., 2008).

3. For example: Open-Source Psychometrics Project, “Big
Five Personality Test,” https://openpsychometrics.org/tests/
IPIP-BFFM/.

4. The Rat Sightings dataset is available online at https://data.
cityofnewyork.us/Social-Services/Rat-Sightings/3q43-55fe.
See also Fry, Visualizing Data, chap. 6.

5. OpenNotify.org, International Space Station Current
Location, http://open-notify.org/Open-Notify-API/ISS-
Location-Now/. Also see Dan Shiffman’s sequence of
video tutorials, Working with Data and APIs in JavaScript,
last updated on July 8, 2019, https://www.youtube.com/
playlist?list=PLRqwX-V7Uu6YxDKpFzf_2D84p0cyk4T7X.

6. See Sam Lavigne’s sequence of tutorials, Scrapism, last
updated on May 27, 2020, https://scrapism.lav.io/.

7. Dataset available at http://www.slate.com/articles/news_
and_politics/crime/2012/12/gun_death_tally_every_american_
gun_death_since_newtown_sandy_hook_shooting.html.

173

Text and Language

Exercises

String Search
Find a table of color names and their
corresponding RGB values. Create an interaction
in which a square becomes colored when a user
types a known color name. (Is your program
case-insensitive?)

Nonsense Words
Find some lists of common English prefixes,
word roots, and suffixes. Select a random
item from each list and combine them in a
simple syntax (prefix+root+suffix) to generate
plausible nonsense words. What might these
words mean?

Letter Frequency
Write a program to calculate the frequencies of
the letters in a provided text. (Be careful to make
your program “case-insensitive.”) Write code to
generate a visualization (such as a bar chart or
pie chart) of the letters’ frequencies.

Letter-Pair Frequency
Write a program to calculate the frequencies
of letter pairs (character 2-grams, such as
“aa,” “ab,” “ac”) in a large text source. Plot the
frequencies in a 26x26 matrix.

Average Word Length
Write a program that calculates the average
word length of a provided text. This is a
useful approximation of a text’s “reading
level.” Run your program on several different
source materials.

Sorting Words
Load a document and display its words (a)
sorted alphabetically, (b) sorted by their length,
and (c) sorted according to their frequency in
the text.

Cut-Up Machine
In the Dada Manifesto, Tristan Tzara describes
using a newspaper, scissors, and some
gentle shaking to generate irrational poetry.
Do the same with code. Write a program
that randomizes the lines or sentences of a
newspaper article to make a Dada-style poem.

Bigram Calculator
Write a program to calculate the frequency of all
bigrams (word-pairs) in a document. Advanced
students: develop a program that judges the
similarity of two text files based on how many
bigrams they have in common.

174 Code as Creative Medium

Dammit Jim
Find a list of occupations. Use these in a
generative grammar that produces sentences
in this format: “Dammit, Jim, I’m an X, not a Y!”
(popularized by the sci-fi TV show Star Trek). Be
sure to write “an X” if X begins with a vowel and
“a X” if it begins with a consonant.1

Knock-Knock Joke Generator
Create a program that generates knock-knock
jokes. At a miminum, your program should select
a random word as a response to “Who’s there?”
and add to this word to create the final line of the
joke. Generate ten jokes.

Pig Latin Translator
Create a program that translates provided text
into Pig Latin. In this playful scheme, the initial
consonant (or consonant cluster) of each word is
transferred to the end of that word, after which
the syllable “ay” is added.

Argots and Language Games
Investigate argots, secret languages, and word
games like Ubbi Dubbi, Tutnese, Pirate English,
and Dizzouble Dizzutch. Select one and write a
program that translates a provided text into it.

Noun Swizzler
Load a text, and replace each noun with
a randomly selected noun taken from a
second text. You may need to use a “part-of-
speech tagger” to identify the nouns. In your
substitutions, try to match the use of plural and
proper nouns in the first text.

Rhyming Couplets
Select and load a large expository text. Create
a program that finds rhyming couplets within it,
in order to make new poems. You may need to
use an additional library (such as RiTa) to tell you
what the words sound like.2

Haiku Finder
Write a program that automatically discovers
“inadvertent haikus”: sentences in a chosen
text whose words happen to fall in groups of
five, seven, and five syllables. A basic solution
will discover haikus with awkward breaks; add
heuristics to improve the quality of your results.

Markov Text Generator
In a Markov chain, a dataset of letter-pair,
bigram, or n-gram frequencies is used as a
“probability transition matrix” to synthesize new
text that statistically resembles the dataset’s
source. Build a Markov generator using the data
you collected earlier.3

175Exercises

Keyword Extraction with TF-IDF
Obtain a collection of related documents,
such as poems, recipes, or obituaries. Write a
program that uses the TF-IDF (“Term Frequency
- Inverse Document Frequency”) algorithm to
determine the keywords that best characterize
each document.4

Limerick Generator
Limerick poems have five lines in an AABBA
rhyming pattern. The building block of these
lines is the anapest: a foot of verse consisting of
three syllables, the third of which is accented:
da-da-DA. Lines 1, 2, and 5 consist of three
anapests; they end with a similar phoneme
in order to create the rhyme. Lines 3 and 4
also rhyme with each other, but are shorter,
consisting of two anapests each. Write a
program to generate limericks. Use a code
library such as RiTa to help evaluate your words’
rhymes, syllables, and stress patterns.5

Notes
Exercises in this section were contributed by Allison Parrish.

1. See Darius Kazemi’s repository of structured corpora:
https://github.com/dariusk/corpora. Also consider code
libraries for producing grammar structures, like Tracery
by Kate Compton, http://www.crystalcodepalace.com/
tracery.html.

2. For Java and JavaScript, see RiTa by Daniel Howe, “RiTa,
a Software Toolkit for Computational Literature,” https://
rednoise.org/rita/. For Python, see NLTK, “Natural Language
Toolkit,” https://www.nltk.org/.

3. For Python see: “Markovify,” https://github.com/jsvine/
markovify.

4. See Dan Shiffman, “Coding Challenge #40.3: TF-IDF,” The
Coding Train, October 12, 2016, video, https://www.youtube.
com/watch?v=RPMYV-eb6lI.

5. Howe, “RiTa”; see “The CMU Pronouncing Dictionary,”
http://www.speech.cs.cmu.edu/cgi-bin/cmudict.

176 Code as Creative Medium

Simulation

Recursive Tree
Use recursion to create a tree. Begin with a
symmetrical design that repeatedly bifurcates.
Introduce a variable that proportionally reduces
the length of each iteration’s branches, and
another to alter their orientation. Explore your
tree’s possibilities by controlling these variables
with the cursor.1

Fireworks (Particle Shower)
Create a particle class that stores a speck’s
2D position and velocity. Add methods to give
the particle an initial, randomly generated
velocity and constant acceleration. Create an
array of particles to simulate a firework. Each
element of the array will need to start from the
same position.

Flocking
Create a two-dimensional flock of creatures,
modeling your animals as particles that exert
(and are affected by) forces of mutual separation
(to prevent collision), cohesion (to stick together
as a group), and alignment (to orient toward
similar directions as their neighbors). Connect
your governing parameters to sliders or other UI
controls, and observe how changing the relative
strengths of these forces alters the behavior
of the flock or swarm. Include other forces,
such as the desire to flee from a predator, the
hunger to hunt for food, etc. Be sure to represent
your creatures with a graphic that makes their
orientation visible.2

Braitenberg Vehicles
A Braitenberg vehicle is an autonomous agent
that moves and steers based on sensor inputs. It
measures a stimulus at its location; depending
how this signal is mapped to each wheel’s
power, the vehicle can appear to exhibit different
goals and behaviors. Implement vehicles that
steer toward or away from the cursor.

Cursor-Sensitive Particles
Create a particle class that stores a speck’s 2D
position and velocity. Add a method that enables
a particle’s motion to be affected by simulated
forces. (See Euler integration and Newton’s
2nd Law.) Create an array of particles that are
attracted to or repelled by the cursor.

Flow Field
Use 2D Perlin noise to compute a flow field,
such that every location on the canvas has an
associated x-force and y-force. Place particles
into this field, impelling them with the forces at
their locations. Make recordings of their traces.
Confine the particles with periodic boundaries.

Spring
Model a bouncy spring as a particle with a
current position P, velocity V, and rest position
R. When moved from R, a restorative force F
proportional to this displacement pushes it back.
Update the particle using Euler integration:
add F into V, reduce V by a percentage due to
damping, and add V into P.

177Exercises

Circle Packing
Generate a “circle packing”: an arrangement of
circles such that none overlap, and some (or all)
are mutually tangent. In one approach, randomly
placed circles are added to unclaimed regions of
the canvas and grow until they collide with any
previous circles.3

Conway’s Game of Life
Create an implementation of “Conway’s Game
of Life.” This classic cellular automaton is one of
the simplest and best illustrations of the way in
which complex patterns of self-organization can
emerge from simple rules.4

Diffusion-Limited Aggregation
Implement and explore the coral forms that
arise from diffusion-limited aggregation (DLA):
a simulation in which meandering particles
become fixed in place when they collide with
previously fixed particles (or an initial “seed”).5

Snowflake Generator
Snowflakes are thought to form through a DLA-
like process. To make a snowflake generator,
modify your DLA simulation from the previous
exercise so that it has dihexagonal symmetry.

Space Colonization
Implement space colonization: an iterative
algorithm, first described by Adam Runions, for
growing networks of branching line structures
based on the locations of “growth hormone”
sources to which the lines are attracted.6

Differential Growth
Implement differential growth, in which a chain
of connected nodes (represented by a curve
or polyline) uses simple rules like attraction,
repulsion, and alignment to produce meandering
shapes. The algorithm uses adaptive subdivision
to interpose new nodes when two adjacent
nodes get too far apart.6

Notes
1. Dan Shiffman, “Coding Challenge #14: Fractal Trees -
Recursive,” The Coding Train, May 30, 2016, video, 15.52,
https://www.youtube.com/watch?v=0jjeOYMjmDU.

2. “6.1: Autonomous Agents and Steering - The Nature of
Code,” The Coding Train, August 8, 2015, video, 14.28, https://
www.youtube.com/watch?v=JIz2L4tn5kM. Also see Craig
Reynolds’s research into steering behaviors and “boids.”

3. “Coding Challenge #50.1: Animated Circle Packing - Part 1,”
The Coding Train, January 9, 2017, video, 28.31, https://www.
youtube.com/watch?v=QHEQuoIKgNE.

4. “7.3: The Game of Life - The Nature of Code,” The Coding
Train, August 10, 2015, video, 16.03, https://www.youtube.
com/watch?v=tENSCEO-LEc.

5. “Coding Challenge #34: Diffusion-Limited Aggregation,”
The Coding Train, August 18, 2016, video, 47.06, https://www.
youtube.com/watch?v=Cl_Gjj80gPE.

6. Jason Webb, “Morphogenesis Resources,” 2020, https://
github.com/jasonwebb/morphogenesis-resources.

178 Code as Creative Medium

Machine Learning

Dataset History Audit
Identify a widely used dataset, such as
ImageNet, MNIST, or LFW. Research its content
and genesis. Who made it, when, and how? Who
uses it, and for what? (What biases might this
dataset have?) Describe your findings in one or
two paragraphs.

Comparing Models
Use two different image analysis or classification
tools to interpret the same image. Write a
paragraph that describes and compares
their results.

Shopping List
Use an object recognition library or a classifier
to store a list of all the objects it sees. Use
it to make a shopping list of everything in
your fridge.1

What Do You See?
Combine an object recognition classifier with
a text-to-speech library. Write a computer
program that narrates what it sees through
the webcam.

Don’t Touch Your Face
Touching your face can spread disease. Train
a webcam classifier to detect when you touch
your face. Write a program that sounds an alarm
if you do. (Image: Isaac Blankensmith’s ANTI-
FACE-TOUCHING MACHINE™, an influential
implementation of this concept.)2

Emoji Translator
Using an image classifier and your computer’s
camera, train a system that detects your facial
expressions and displays corresponding emojis.3

Body as Game Controller
Train an image classifier to determine whether
you have raised your left or right hand. Using
a “webdriver” (also called a mouse/keyboard
automator), write a program in which your
classifier controls a classic arcade game, such
as Space Invaders, by spoofing presses of the
WASD or arrow keys. Examples of webdrivers
include the Java Robot class, JavascriptExecutor,
and Selenium Browser Automation Project.

179Exercises

Draw with Your Nose
Use a pose classifier or face tracker to create a
program that lets you draw with your nose.4

Hand Puppet
Train a webcam regressor to produce a number
between zero and one, according to the closing
and opening of your hand. (Your regressor could
use hand pose data from a tracking library, or it
could process the camera’s pixels directly.)5 Use
this number to puppeteer the mouth of a simple
cartoon face.

Environmental Sound Clock
Collect some audio recordings of the ambient
sound in your room in the morning, at midday,
in the evening, and at night. Train a classifier or
regressor with these sounds. Use this system to
display an approximate estimate of the time.

Sentiment Analysis
Collect the last ten text messages that you sent.
Use a sentiment analysis tool to assess the mood
of each message.6

More Like This, Please
Create or download a collection of about a
thousand images representing a narrow category
of subject matter (cats, flowers, yearbook
photos). Using a Generative Adversarial Network
(GAN), synthesize new images that appear to
belong to this dataset.7 (Image: “This Foot Does
Not Exist” by the MSCHF collective.)

Clustering a Collection of Images
Generate a 2D map that reveals similarities
between images in a set. Begin with an image
dataset that interests you. Using some sort of
image analysis library, such as a convolutional
neural network, calculate high-dimensional
numeric descriptions for each image. Simplify
these description vectors to just two dimensions
using a dimensionality reduction algorithm, such
as UMAP or t-SNE. Plot your images in the (x,y)
locations produced by this algorithm. Discuss
the clusters you observe. (Image: a UMAP plot
by Christopher Pietsch showing the OpenMoji
emoji collection.)

180 Code as Creative Medium

Additional References
Yining Shi, syllabus for Machine Learning for the Web
(NYU ITP, Fall 2018 and Spring 2019), https://github.com/
yining1023/machine-learning-for-the-web.

Gene Kogan, “Machine Learning for Artists,” GitHub, accessed
April 11, 2020, https://ml4a.github.io/.

See RunwayML and their learning section that includes
libraries for common creative coding environments
like Processing. “Learn,” RunwayML, accessed April
11, 2020, https://learn.runwayml.com/#/networking/
examples?id=processing.

Notes
1. See the image classification example in the ml5.js library:
“imageClassifer(),” accessed April 11, 2020, https://ml5js.org/
reference/api-ImageClassifier/.

2. See the ml5.js and Teachable Machine projects for in-
browser tools to train a model. “Image Classifier,” accessed
July 11, 2020, https://learn.ml5js.org/docs/#/reference/
image-classifier; “Teachable Machine,” accessed April 11,
2020, https://teachablemachine.withgoogle.com/; and Isaac
Blankensmith’s “ANTI-FACE-TOUCHING MACHINE,” https://
twitter.com/Blankensmith/status/1234603129443962880.

3. Hayk Mikayelyan, “Webcam2Emoji,” last modified
September 16, 2020, https://github.com/mikahayk/ml4w-
homework2.

4. Dan Shiffman, “ml5.js Pose Estimation with PoseNet,” The
Coding Train, January 9, 2020, video, 14.24, https://www.
youtube.com/watch?v=OIo-DIOkNVg.

5. See the featureExtractor regressor in the ml5.js library,
and hand trackers such as Ultraleap and Google’s MediaPipe
HandPose library.

6. See the sentiment model in the ml5.js library: “Sentiment,”
accessed July 11, 2020, https://learn.ml5js.org/docs/#/
reference/sentiment.

7. See, for example, RunwayML, or the DCGAN tools in ml5.js.

181

Sound

Exercises

Theremin
A theremin is a monophonic instrument whose
volume and pitch are controlled by the positions
of a player’s hands, relative to two antennae.
Using the x and y positions of the cursor, create a
simple theremin in code. You may not use mouse
clicks or the keyboard.

Sequencer I
Create a sequencer that plays a fixed, looping
phrase or a collection of sounds. You will need to
use arrays to store values that are interpreted as
musical notes, chords, rhythms, or other musical
parameters. Advanced students: consider how
your sequencer’s “score” is displayed.

Sequencer II
Create a sequencer that allows a performer to
record and play back a looping musical phrase.
Devise a visual interface so the performer can
alter its playback: for example, changing its
speed, transposing it, playing it backwards,
reordering its notes, or altering its timbre.

Sampler
A sampler is an electronic instrument that
triggers sound recordings. Create a sampler
that triggers sounds with key presses. Develop
a method for altering the nature of the playback
in a way that is coupled to the x and y position of
the cursor.

Modulation
Create a project that uses oscillators and
envelopes to continuously modify some
parameter of a sound. For example, you
might implement tremolo (periodic amplitude
modulation), vibrato (periodic frequency
modulation), or wah-wah (periodic modulation of
a resonant filter).

Filter
Create a simple interactive program that permits
the user to filter a sound or noise source, using
the x and y positions of a cursor to control the
filter. Experiment with different types of filters
and their parameters.

Polyphony
Create a sonic experience that explores
polyphony. Scaffold this on a visual system
(such as a simulation or game) where the pitch
of each voice responds to the speed, position,
or orientation of a corresponding particle or
mob. For simplicity, restrict your polyphony to
multiples of the same instrument or sound.

Visualizer
Create a music visualizer for a specific musical
recording. Your display should respond to the
dynamics (volume changes) and, if possible, the
frequency content of your chosen music. For
simplicity, be sure to select a recording without
speech or lyrics.

182 Code as Creative Medium

Data Sonification
Locate a real-time Internet data stream, such as
one published by a sensor or an API (monitoring
weather, stock prices, satellite locations,
tweets, seismic events). Create a program that
sonifies this data or uses it to control a musical
parameter for a generative composition.

Delay Line Effect
Using a delay line (a collection of time-delayed
copies of a sound), create a program that
transforms a specific sound in a customized
way. Popular delay line effects include echo
and reverb but also flangers, chorus, and
harmonization, when governed by an oscillator.

Physics-Based Modulation
Create or repurpose some code for a real-time
physical simulation, such as a particle system or
spring mesh. Use time-varying quantities from
the physical simulation to govern continuous
parameters of an audio synthesizer. Consider
using statistical properties of the simulation
as the basis for audio mappings. For example,
the average horizontal position of a collection
of particles could be mapped to the stereo
position of a sound, while the particles’ mean
velocity could be mapped to pitch. Which
mappings produce the most compelling results?
Do you note a tight connection between the
visualization and sonification of the simulation?

Whistle Cursor
Find a tool to estimate the pitch of a real-time
monophonic audio signal, such as the fzero~
object (Max/MSP/Jitter), sigmund~ (Pure Data),
or ofxAubio (openFrameworks). Create an
interactive game in which the pitch of the user’s
whistling is used to steer a spaceship up or
down.

Synthetic Voice
Build a DIY speech synthesizer. Use any audio
techniques you wish, except for preexisting
speech samples or a text-to-speech system. You
could synthesize different vowels with formant
synthesis and consonants with gated noise.
What word does your machine pronounce best?

Sound to Physical Action
Use a microphone to control an actuator in a
sculpture, environment, or product prototype.
Consider how mic placement affects the sounds
you’ll collect. An example: collect door-knocking
sounds with a contact mic; use these to govern a
solenoid that makes tapping sounds far away.

Note
Exercises in this section were contributed by R. Luke DuBois.

183

Games

Exercises

Immaterial Game
Design a game that requires no materials,
such as one you might play on a car ride or on
a long walk. Your game should require at least
two players.1

Collision Detection
Write code that moves two circles around the
screen in an unpredictable way. (Consider using
something like Perlin noise.) When they overlap,
have them indicate this by changing color.

Whack-a-Mole
Create a game in which animals or objects
appear and disappear abruptly on the
screen, and a player has to click on them to
score points.2

WASD Navigation
Implement a control system for the movement of
an avatar using the WASD keyboard keys.

Recoding a Classic
Recreate a classic arcade game such as Pong,
Snake, Tetris, or Space Invaders. Alternatively,
modify a classic arcade game (code for which is
readily found); your mod should introduce a twist
or subvert the game in some way.3

Physics Fun
Create or borrow the code for an organic-looking
simulation, such as a bouncing ball or a springy
particle system. Now turn it into a game.4

Level Designer
Design a data format to represent maps in a
dungeon game. Use a system of tiles so that
each map combines tiles of different kinds (e.g.,
walls, paths, water, treasure). Create a “level
design tool” that allows a user to choose, place,
and save map data.5

Notes
1. Dushko Petrovich and Roger White, eds., Draw It with Your
Eyes Closed: The Art of the Art Assignment (Paper Monument,
2012), 28.

2, 3, 4, 5. Contributed by Paolo Pedercini.

Part Three: Interviews

186 Code as Creative Medium

Teaching Programming to Artists and Designers

What’s different about teaching artists and designers to code, in contrast with
teaching programming in a computer science context?

Educator Leah Buechley has observed that artists and designers are
accustomed to (1) learning by making concrete examples, rather than by
studying abstract principles; (2) working in ways that are improvisational,
rather than planned; and (3) creating things that are expressive, rather than
utilitarian. Taken together, Buechley’s observations delineate some of the
key ways in which the assumptions, cultures, and presumed objectives of
traditional computer science education often fail for artists and designers.
In this section, educators elaborate on the special conditions and
considerations for teaching a “studio art course in computer science.”

187Interviews

Teaching Programming to Artists and Designers Heather Dewey-Hagborg
I think it’s important to teach everyone to code.
I think it’s a fundamental literacy that we need
to be advocating for across the board. But for
artists in particular, it has to be project-based.
I think that the only way you really get artists
motivated is by having them work on their own
thing, something that they are actually excited
about doing. In my experience, giving a bunch of
assignments that they don’t care about is kind of
useless. Instead, if they are trying to synthesize
things that they have read or seen a video about
into something that they actually want to make,
then they will learn it. I think that’s maybe more
important than what the project looks like, or
what language it is written in, or whether it is
something visual or not. At the end of the day,
people will want to work on all different kinds
of things and I really do think that once they
learn one language well, they can just pick
up any other one. Really, the aim is to make
programming a tool for artists to use of their
own volition and with their own agency, to make
what they really want to make.

Daniel Shiffman
Ultimately people are people, so you can teach
classes any number of ways to different groups.
However, I think that the idea of sketching with
code is really important as it implies a lightness
in trying things out. I’ve had this discussion
with Lauren McCarthy, who has a really formal
computer science background. She was telling
me about how hard it was for her to get used
to teaching in a creative context like NYU ITP
[the Interactive Telecommunications Program at
NYU Tisch] because in computer science, there
is this feeling of having to know everything, how
everything works and of being able to reproduce
everything from scratch in a memorized and

almost blue-book test kind of way. In contrast,
teaching in a creative environment or in an arts
environment is about being able to embrace
uncertainty—where students don’t necessarily
know everything but they should try it anyway,
where mistakes might actually lead to exciting
ideas, and where there doesn’t have to have to
be a thing that is solved with an exact answer. In
a way, it’s almost like stream-of-consciousness
coding. I don’t want to portray the computer
science class in a negative way, but by contrast
it’s based on learning something exactly
and precisely.

To be honest, it’s hard for the students.
Every semester I have a student say, “Okay, I
really feel like I’m not getting this because the
thing you showed in class, I can’t sit down by
myself from a blank sketch and like, write it
again.” But nobody can do that, really! Everybody
who’s programming something is programming
it because they did something similar before.
Or it’s built on top of a library and they started
with the example, and that’s a totally valid way
to learn.

Lauren McCarthy
Amongst CS people, I think there is this feeling
that the code itself is the art, and that there
are all of these ideas and techniques you have
to understand first, like managing complexity
and modularity, before you can get to really
make things. That was really hard for me when
I started teaching. I’d think, “Oh, we’re just
showing the students how to make shapes
on the screen; they don’t understand what
programming is about.” But actually that is
totally wrong because programming can be
about a lot of different things. Usually when
teaching artists, some of them will immediately
fall in love with the logic of it, but for a lot of

188 Code as Creative Medium

them, that’s not why they’re excited. Typically
they have other goals. If they progress far
enough into it, some might start to feel curious
about the higher-order stuff of programming, or
they may not. As for me, I wasn’t interested at
all until I realized I could make art with [code],
so I think teaching programming to artists
is a lot about expanding purist ideas of what
programming might be.

Phœnix Perry
I think you need to assume no skill. I think it
is really important to make sure that students
have the basics right. I think that you also need
to review fundamental mathematics in a way
that is connected to a visual output. A lot of my
students were taught math without it having
any meaning; they get taught sine and cosine
but they never learned these ideas in terms of
animation and oscillation.

Golan Levin: I can relate. Sometimes I have
studio art sophomores who don’t know the
Pythagorean theorem. I’m like, “Here’s a right
triangle; let’s talk about it.” And when they
struggle with it I have to remind them, “Folks,
c’mon. This is ancient Greek technology. It’s the
21st century; you need to know this stuff.”

But it’s mathematics, and it’s been
strangely segmented from the arts. If you
identify as a creative person, it’s often really
hard to see yourself as a mathematician or as
a scientist, or that you would even have the
confidence to be good at those things, right? So
I think you have to really reintroduce subjects
in a language the artists understand, which
is visual and auditory. And if you can do that,
they’ll often get it all of a sudden.

Zach Lieberman
I think one of the biggest challenges to respect
when teaching artists to code is that this mode
of working tends to be pretty solitary. You’re
in front of a computer screen. It tends to be a
time-consuming and solitary experience and
that can be frustrating, especially if you’re used
to practices that are more physical, or group-
based, or based on discussion. Instead of talking
to people you are talking with a compiler. You’re
in a conversation mediated through a computer
screen, and I notice students who get frustrated
with that.

De Angela Duff
I’ve actually taught both computer science
and art students, because in our digital media
department we have both. Computer science
students have a totally different mentality from
the art/design mindset and one of the reasons
why they take our class is because they do want
to be “creative.” Of course you can’t just typecast
them…[but] the ones who might be perceived
as more traditional computer science students,
they don’t consider themselves as being creative
or having visual art skills.

I have the class post their projects to
OpenProcessing.org, so everybody can see
everybody else’s work, and a lot of times
those students [will] be amazed at what other
students came up with, and they realize that
their drawings weren’t as ambitious. It’s really
important that they can expand upon it and
remix it or whatever you want to call it, as we
work with this drawing for a long time. So I give
them one week to revise. One of my former
coworkers used to say that students rise to the
water level that you give them and usually that
water level is set by somebody in the class. If one
of the students does this amazing thing, then

189Interviews

the students look at what they’ve done and they
think, “I can put a little bit more time or effort
into this.” I hear a lot of, “I can’t draw,” and it’s
not about that; it’s about creative expression
and using these basic building blocks like
circles, squares, triangles, lines, and points. Yet
this actually is sometimes one of the hardest
assignments for a lot of the students.

Rune Madsen
One major difference with teaching designers is
that we don’t really care about whether the work
is done in a “bad” way or if it’s implemented in
the way engineers would do it. We really just
care about making the thing blink, making the
thing functional. And then after a long time, the
students will learn how to do things properly...
but at least when I teach, I’m not that concerned
with that in the beginning. In my classes, there is
a lot of deconstruction happening that is about
technique, but the instruction goes from the
artwork backwards to the algorithms and the
systems, and finding systems in things that the
students normally don’t think about as having
systems. So we look at graphic designers from
the ‘50s and ‘60s, and things like printed posters
that were done before the computer. And then
try to deconstruct them into, “So this designer
sat down and had to do this thing by hand. But
how? What was their system”? And then we
take that system and then we go backwards, and
think, “Okay, how can we do that in code?” So
there is a lot of luring the students—like we start
with the end goal and then show them the way
and the reason why code is important.

Winnie Soon
From my experience, art and design students
have been exposed to artworks in which
programming is used in different ways, and

so they are not just focused on what works
functionally, but are more interested in the
thinking behind it. However, programming is
still historically and culturally rooted in cultures
with high standards of professionalism and
instrumentalization; it’s seen as a utilitarian
skill. When teaching art and design students, I
observe that they are very uncomfortable with
calling themselves coders or developers. It’s like
even though you might know how to write, it
doesn’t mean you would call yourself a “writer.”

Allison Parrish
What’s great about teaching art students or
teaching creative writing students is it’s rarely
vocationally regulated. Nobody is trying to take
my class to see if they can get a better job, or
very few students are....But it’s kind of a relief
and a blessing as an instructor to have students
who are very eager to learn what I have to say so
that they can apply it in their own arts practice.
Whenever I say something or whenever I teach
them something, you can just see a light go on
in their head and they’re like, “This is going to
let me do this other thing that’s a part of my
own practice.” It never feels like I have to make
the class goal-oriented; it never feels like I
have to make the class about working towards
something other than our interests as artists.
For me, the main difference is that there’s a
little bit of wiggle room. I can say, “Let’s
appreciate this process for its aesthetic effect
on us,” instead of having to ask, “Does this meet
these particular criteria in the curriculum?” or
“Is this going to prepare students to succeed in
the tech industry?”

190 Code as Creative Medium

The Bimodal Classroom

How do you manage novice and experienced students simultaneously?

As programming skills gain wider public adoption, it has become
increasingly common to have classes in which experienced and
inexperienced programmers are mixed together. This can be
particularly vexing in technically oriented contexts, in which the
absolute beginners feel lost, while students who are already familiar
with the material are bored.

191Interviews

The Bimodal Classroom Taeyoon Choi
For me, the best way [to manage differing skill
levels in a classroom] is to give two different
versions of the same assignment, especially
for my electronics classes, where there’s often
different ways of doing the same thing. I like
to give challenges to the experienced people
who have done it once, and for the beginners,
give them enough time to learn. I want to avoid
having one person done in ten minutes while
there is another person taking an hour to do
it. A more hands-on approach we use at SFPC
[the School for Poetic Computation] has been
to encourage the advanced students to mentor
the beginner students—not in a hierarchical way,
but to have them solve the problem together.
That has mixed success; it works for some
assignments and not for others. Something
that I learned from other teachers at SFPC is
to encourage the more advanced students to
build teaching materials. They may be able to
solve a problem quickly, but for them to come
up with new assignments from that code or
new assignments for another toolset is a more
conceptual challenge. It’s also important to
understand that even the most advanced
technical students are probably not experienced
teachers or artists, and are probably not
confident explaining or helping other people, so
there’s a lot for them to learn from that practice.

Daniel Shiffman
For a beginner, I try to have an approach of
looking at a particular example in incredible
detail—so, line by line, making sure every little
piece is sort of talked about and understood,
and building up this example. In theory I might
do that for half the time and then the other half
of the time I look at an example from a higher
level, talking about the concepts and demoing

it in a way that we can have a more free-form
conversation, where it’s okay if the students
don’t suddenly know every part of how the code
is working. In some ways I oscillate between
shooting for the low end and shooting for the
high end, as for me, the place in the middle
is sometimes problematic. Like, “I’m kind of
showing you the code, but not really” or “I’m just
giving you some things but not all of them.” This
can get confusing. I feel like it’s helpful to either
go through the process step by step or to just
run an example and talk about what it is and why
it’s meaningful and important. Then students
can look at the code later.

In some ways a lot of what I do is creating
a feeling of ease in the classroom. I often joke
that I don’t know if I’m teaching anybody or if
I’m just giving people the feeling that they’re
learning. Ultimately students have to learn it on
their own when they go and try the stuff, and so
it’s important to have people feel empowered
and feel that they can do it.

Rune Madsen
I teach a class on graphic design and code.
What I say in the beginning is, “Some of you
are very experienced programmers, but you
may not have the experience in the visual arts
that some other people have, and that is a skill
you will have to acquire. So, it’s as hard and as
important for you to work on those things. And
equally, if you have never programmed before,
you might have skills in other places.” So it’s not
a situation in which students who can already
program are considered amazing, but students
who are maybe design-driven but have never
programmed are regarded as not knowing
anything. The other consideration that I have
is the pace in the class. I try to never shoot for
the lowest common denominator in my class

192 Code as Creative Medium

because it does a disservice to all the other
students. So I set the bar pretty high. But then
in the classroom, I talk a lot about fundamentals
that everyone can do. And then if I want, I can
be very clear about saying, “Now we’re going to
talk about something that might be a little hard
for some of you. That’s completely okay. If you
want to, you can play around with this in the
meantime, but if you’re interested, feel free to
follow along.” And then I talk about something
that might be a little bit more advanced. Or I’ll
say, “So everybody practice this now, and I’ll
go around and help you. If you’re really up for a
challenge, do this other thing.” So I try to have
multiple tiers always going at the same time.

Winnie Soon
99% of my students are beginners with no
programming experience, but after the first
few weeks you do start to see who is really into
programming, as these students spend hours
and hours on it. Then you see different skill
levels, so this issue emerges. I alway emphasize
that my course is “low floor, high ceiling,” which
is discussed by Seymour Papert and Paul Wang
in their work on computational thinking. When
you introduce programming it has to be with
a low barrier; it has to feel accessible so that
you can get started. But at the same time it
has to feel like there is no limit, no ending, and
it’s possible to go deeper and deeper. So every
assignment I set, even if you are a beginner
in terms of coding, you are still able to submit
something—with references, with sample code,
with tinkering. My assignments aren’t computer
science assignments where there is a correct
answer. Instead, they are conceptual, so that the
more advanced students can go really deep and
apply more complex programming skills.

Phœnix Perry
Usually what I do is I pull the experienced people
aside after class and be like, “Whoa, you’re
awesome, why don’t you go and check out this
book. You can ignore me when I talk, if you show
me what you can do with this.” I give them stuff
that’s outside their skillset, that’s actually really
hard material, and it’s like a puzzle and then they
sort of ignore you in class, and at the end they
come back with something. The other thing you
can do is turn them into TAs, but the danger
with those students is that their knowledge is
usually patchy in that they think they know more
than they actually know. I’ve seen those students
become the worst in the class because they get
lapped by the others who are paying attention
and are systematic in a pedagogical way.

Jer Thorp
I’ve learned to not be very rigid in the way that I
define projects, and to allow people to operate
within those projects at a comfort level that
works for them. The first time I taught my class, I
defined the projects so rigidly that the difference
between the good coders and the bad coders
would really stand out, but by defining the
projects less rigidly, it allows people to play to
their strengths more. That’s something that took
me a long time to really embrace. My projects
are now about a theme and not about how I
insist that you work on that theme.

Lauren McCarthy
I really try to push that it’s not just about wanting
to program. A lot of times, if you’re a very good
programmer, that probably means that you
haven’t spent a lot of time thinking about art or
design or user interaction or any of these things.
So I just try to emphasize that, but also when
we are giving feedback, I try to call on people

193Interviews

who have these other skills to make everyone
realize that these are just as important and
relevant. Setting expectations in the beginning
is helpful. I let the advanced students know
that technically [the class] might feel a little bit
slow, but that gives them time to explore some
of their other ideas. And also vice versa—I try to
help the students who are beginners understand
that some [of their classmates] have done this
before, but [their inexperience] doesn’t mean
that they are bad at it. I encourage them to not
feel intimidated, to survey their skills to see what
they are missing, and to ask themselves how
they might work on those skills.

Zach Lieberman
I deal with this a lot as most of the classes
I teach tend to be mixed...I think having
classrooms where there are people with different
skill sets is really valuable, specifically in terms
of the community. What you want to do is create
conversation, create modes in which beginners
are asking questions of experts and [there is] a
chain of learning. When everyone is in the same
place it’s much harder to do. What I try to do for
the experts is give them prompts where they
feel like their input and time in the classroom
is both useful and valuable. I often ask them,
“Can you take the things that we’re talking about
and create tools and techniques to teach this
better?” I try to turn them into teachers in some
way and I try to give them prompts that push
them to have that sort of mindset. There are also
ways of making everybody a beginner, because
everybody is a beginner in something. So in a
classroom where there are both beginners and
experts, can you figure out ways to push the
people who think they know the material and
flip what they are doing so that they realize that
there is a lot that they don’t know? I like to show

them the problem set in a different way, like in a
different language or with different constraints.

At some point in a bimodal classroom,
I also think there is value in pulling out the
beginners or the people who feel like they are
lost, and creating a safe place where this small
subgroup can meet. So in a classroom of 15 you
might have 4 or 5 students who meet privately
and you try to raise their comfort level and
confidence. They often need a safer space to ask
questions they might not ask in class because
they are shy about asking.

Luke DuBois
I have to do the “one-room schoolhouse”
thing a lot. Sixty percent of my students are
products of the New York City public school
system because we’re NYU’s last commuter
school and unfortunately, most of my students
didn’t have the chance to go to Bronx Science
or Brooklyn Tech. They went to places where
their computing class was maybe how to use
Dreamweaver. Some have done CS and they
have some math, but nobody ever thought to
take them to MoMA or the Guggenheim. One
of the things that’s really nice about my little
proxy for an art program inside an engineering
school is that in an engineering school you’re
encouraged to assign lots of group design work.
And so I can figure out these orthogonalities
between the students pretty quickly and pair
them in ways so that they match each other
and so that they have to teach each other stuff.
I try to do that as much as possible. It’s hard—
like this year it’s gotten really hard because
we started admitting new graduate students
coming from other parts of NYU that cover
recorded music and undergrad photo. And
those kids have a very high cultural fluency, but
they don’t have any of the computer chops. Or

194 Code as Creative Medium

if they do it’s like they know how to use a crack
of Ableton really well but they don’t know how
to code. In response, I made every assignment
on how to use photography in some way, but
everybody had to have a soundtrack. I “de-
oculocentrized” the curriculum and everything
had to have music, no matter what.

De Angela Duff
I’m a huge believer in pair-programming, or peer
programming. I usually pair a more seasoned
programmer with one who is less seasoned
or a novice, and I have the novice do the
programming and have the more experienced
person be the observer. I also encourage the
students to form external study groups, as
sometimes I find that the students who already
have experience programming actually really
want to help the other students, and that one of
the ways they can do this is by spearheading a
study group outside of class. I might also have
a student explain a programming concept using
different language than what I’m using.

I always tell students to use multiple
resources when they learn how to program. I
always assign two different textbooks and then
tell them to try to get a third resource if they can.
They all have different examples and explain
certain concepts differently, and I think the more
the merrier when they’re trying to understand
something for the first time.

Tega Brain: You mentioned that you sometimes
teach multiple languages in parallel.

I always do. I don’t want students thinking
“I can only program in X,” because I teach
programming as a tool and I want my students
to be able to program in any programming
environment. If they know what a loop is, or what

an array is, or what an object is as a concept,
then they just need to figure out the syntax. I
teach three programming languages at the same
time only because they usually drop one. I don’t
tell them two is fine but they typically gravitate
towards two out of three. I structure the class so
that we’re learning the basic concepts two-thirds
of the way in all three languages, and in the
last third of the semester they select their own
project. For the week-by-week deliverables they
have to write them in all the different languages,
and in the final third of the semester they can
select one of those languages for the final
project. I give them extra credit if they build it in
two languages. Mostly they don’t like it at first,
but I do find that students rise to the water level
that you expect of them. Hopefully it helps them
learn new languages when they need to, without
being afraid.

Allison Parrish
Teaching technology with the arts in mind
kind of gives you a leg up on that problem
automatically. If you consider my class as
primarily a programming class—which it isn’t,
but if you look at it from that point of view—it’s
the conceptual part that levels the students to
some extent because there are some students
who, despite being beginning programmers,
have amazingly strong artistic points of view and
are aware of the history of procedural writing or
are into conceptual writing in general. Even with
the very rudimentary tools that I’m teaching at
the beginning, they’re able to make something
that aesthetically stands up to whatever the
advanced programmers are making off the
bat. I often teach in Python, and Python used
to be a language that not a lot of people knew,
and so that was another equalizer for the class.
That’s been less true more recently in the last

195Interviews

couple of years as I get more programmers
coming into my class who have a deeper
understanding of Python. But then the subject
area [of creative writing and computational
poetry] helps with that problem. Not a lot of
computer programmers know how to do that,
so a little bit of every tutorial is going to be new
to everyone regardless of what their preexisting
programming skill is.

196 Code as Creative Medium

Encouraging a Point of View

How do you encourage meaning-making, criticality, perspective, and heart in
otherwise technoformal education?

“More poetry, less demo.” This is the motto of the School for Poetic
Computation (SFPC) in New York City, an artist-run school co-directed by
Taeyoon Choi, Zach Lieberman, and Lauren Gardner. The motto encapsulates
an expanded ideal for the education of computational literacy: one that
frames “learning to code” not as mere vocational training, but as central
to cultivating a student’s critical perspective and expressive voice. In this
scheme, “creative coding,” by analogy to creative writing, is an essential
practice. Simultaneously, this motto also critiques a prevailing technophilic
attitude: one characterized by technological solutionism, a seemingly
apolitical preoccupation with “disruptive innovation,” and the narrow
objectification of programming education as an economic stimulant.
The SFPC motto is also, in its own modest way, an aspirational rebuttal
to older critiques of computer art as hollow, impersonal, and instrumental.
In this section, we ask educators how they work to ensure their students’
focus on making meaning, in spite of technoformalist tendencies in
programming education.

197Interviews

Encouraging a Point of View Taeyoon Choi
That is a really good question because it’s easy
to retreat to this mode like, “We are going to
help you become a coder; we’re going to help
you become an expert.” But to me that sounds
as thin as, “We are going to help you become
good at Photoshop.” I think the real question
is about finding a desire within students to
master the language of the technology. It’s
code and electronics and all of that, but it’s
really about expressive literacy. I want them to
approach code and technology as an artistic
medium, so they can not only overcome the
psychological barrier of “I can’t do this” or “this
is not for me,” but also be creative with the
medium. One thing I like to do is give exercises
that are as simple as possible. For example,
one button, one output, like pressing a button
that lights up an LED, and putting delays in
between. I like to show that you can make a lot
of meaning with very little technology.

Zach Lieberman
I try to bring in as many outside examples
of things that I think are important, even if
they are not necessarily made with code, but
artworks or visual ideas or projects that inspire
me....A lot of teaching is about the public
articulation of values in a classroom, and that
helps students understand your value system.
Maybe they have their own value systems or
interests, but seeing your curiosity, and what
you think has heart, helps them bring that into
their work.

Jer Thorp
I’ve been lucky to teach programming in
environments where people want to find
meaning in the work. I throw a lot of theory
and a lot of reading and a lot of weird stuff

at the students. Often I assign a novel that
they have to read during the class. In the past
I’ve assigned Gary Shteyngart’s Super Sad
True Love Story and normally, the response is
overwhelmingly “Oh, that was great! Give me
more of that.” Almost nobody says, “Please
teach me more technical things.” The response
is almost always, “Let’s get into the weird stuff
more.” I would encourage people to think about
ways to do that, even in a basic programming
class. Give small readings. There are some
great Pynchon passages that are so good for
this type of thing. Ask them to make something
in response, to remind them that it’s not all
about the computer.

Lauren McCarthy
I like to show a lot of references and artworks
that have nothing to do with code, especially
when I’m giving assignments. I ask students,
“What would this be like if we were doing it
with the tools that we’re using? How would this
idea manifest?” I also put a really big emphasis
on context, especially as we get closer to the
final project. For example, they are required to
come up with several examples of influences
or other things that inspired their work beyond
the “I learned how to make a for-loop” or “I
went to office hours” type response. This is
often really hard for some people at first and
when I ask for their inspiration, their response
is literally “office hours with the residents.” So I
always say: “Keep looking!”

The Web is also a really ideal social
context for sharing and publishing work.
We taught our intro class with the Web this
semester and it was cool because people are
already so familiar with that space...everything
from websites, to news, to ads, to videos, to art
pieces. I also try to bring in news and current

198 Code as Creative Medium

affairs, like, “Hey, this lawsuit is happening, or
this new regulation got approved. What does
that mean for us?”

Tatsuo Sugimoto
It’s important to balance the technical and the
conceptual, but developing conceptual thinking
can be very hard, especially in Japan where the
art and technology scene is very commercial.
Japan is very different from the USA or
Europe—of course there are some artists using
technology, but most of the work is coming
from designers and from commercial studios.
My students know less about artists and art
practices, but are very familiar with commercial
work. I think art is an important space for being
critical of society, but many Japanese young
people don’t often think this way. For example,
in Japan, drones are popular in entertainment
and live performance, but on the other hand
they are also used for military purposes and for
surveillance. People don’t think enough about
this. I don’t have the answers, but I show a lot of
examples of international art projects to try to
draw my students into thinking about the politics
of the tools they are using.

Daniel Shiffman
Early in the semester, I tell them, don’t worry
about making a magnum opus, you don’t have to
make a really important, meaningful thing: just
play and explore. Let your work wander, and in
that sense, have a free spirit while you’re doing
your assignments. It’s okay to focus on, “I just
want to try this thing with a for-loop, because
that’s what we’re learning and I don’t want to get
lost in my own head about having to solve this
climate change crisis; I just want to play around
here with a for-loop.” So it’s OK to free yourself
of the ideas at some point, and then—and this

often happens at the end of the semester—
flip it and free yourself of the technological
requirements. I always offer to students, “You
don’t have to use code for your final project,” but
nobody ever really takes me up on this. I say, “If
you have a project that came out of the ideas
we’re talking about and you’re excited enough to
make it without code, go for it and explain why.”
I’m sure that the process of a student explaining
why they’re not using code would show there’s
probably a good reason.

The other thing students get really lost in
is, “But I think it’s so simple, I feel like it needs
more.” It isn’t bad if it’s simple; that can be good.
Worry about your idea or what you’re trying to
communicate at that point and forget about
the technology.

Heather Dewey-Hagborg
In my Intro to BioArt course...I’m trying to teach
technical skills but I’m also trying to teach
something that students don’t really know
anything about, and trying to bring in critical
and ethical questions along with that. The way
that I structured the BioArt class is around
four projects: three topical projects that each
involved several sets of skills, and then one final
project. Each project is a module, and then each
module had a set of critical readings to frame the
conversation for which the students had to write
a page. Before we came into class they would
discuss the readings and I had them all submit
a very short essay the day before, just to make
sure they actually read it and thought about
it.Then in class I went through their writing and
pulled out one thing from each student’s writing
and tried to bring that into the conversation.
So before we actually started working hands-
on with the materials and the methods of the
technology, I tried to frame it with those critical

199Interviews

questions in mind. Then when they started on
their final projects, I also tried to bring those
questions from the readings they critiqued
back into the discussion of the project. It was
very natural this time because the students
had already been thinking about these issues
a lot and so as they started proposing projects
or sharing their work, the questions naturally
came into the critique from all directions and
not just from me. I feel like I‘ve grappled with
this question for a long time when teaching
programming and even during the last semester
with the BioArt class. This was the first time I
think I’ve ever come kind of close to getting it
right.

Luke DuBois
I mostly have engineering students, and
the hardest part of teaching engineers is to
get them to know that they are allowed to
ask questions too. That they are allowed to
draw from their own lived experience and
problematize a situation. These things are not
normalized in their educations so they’re flying
blind when you ask them to do that. We have
hybrid classes, such as one around developing
assistive technologies. It’s an undergraduate
disabilities studies class that requires client-
centered design and we do it in partnership with
United Cerebral Palsy of New York. We put two
undergraduate engineers on a client, so it could
be computer science students, it could be civil
engineering students, or others. And the first
thing they have to do is make a documentary film
about their client that helps teach empathy, and
then they have to make a design intervention.

A problem with engineers is that they’re
trained to always go for the most general
solution of a specific problem. But that doesn’t
really work in this context, so instead of saying,

“You’re going to make an adaptive wheelchair
thing and we are going to patent it and we are
going to get it approved by the FDA,” instead,
it’s more like: this is Steve. Steve has cerebral
palsy, Steve has residual motion in two fingers
on his right hand, Steve needs an umbrella. Now
design that for Steve. That’s an actual example
of a real case, and they created this mechanized
umbrella. In the Ability Lab, we often do “design
for one.”

With societal-scale problems, solutionism
falls apart really fast and that’s a really useful
lesson for undergrads—to understand that you
can’t necessarily fix things by building a better
widget. So we encourage “meaning-making”
with our engineers by giving them problems
that don’t or can’t have exclusively technological
solutions. I’m not as good at this as my colleague
Dana Karwas, who is really good at pushing
them to reveal aspects of their lived experience
and to riff on that. Dana does a lot of activities
with her students to help them address things
that have happened in their lives, often bad
things, and it’s a way of distilling art out of shit.

Winnie Soon
My course Aesthetic Programming is different
from a typical coding course in that every
week we have one or two conceptual texts the
students have to read. For example, in the first
week we teach shapes, like drawing rectangles
or ellipses, so I usually give them something to
read on representational politics, like that of
emoticons, or something about the politics of
geometry. So it’s about shapes, but also how can
we think about shapes differently, or how when
we use emoticons, how colors matter. How we
assume one emoji is rendered the same on every
device, but this universality is not the case. I
have them think through the problems that arise

200 Code as Creative Medium

because of this kind of technical infrastructure.
In terms of assignments, each week my

students make a RUNME and a README. A
RUNME is technical, like writing a program.
At the same time they need to contextualize it
through the README using the text they are
given to read. This forces them to not only code,
but also think with and through coding and the
text. I provide a brief for both the RUNME and
the README. For example, they may have to
redesign a progress bar for the RUNME. I give
guiding questions for the README like: what
does a progress bar hide or show us? How
does it link with the text, to help us think about
temporality? The README is like a description
of the program, but also a discussion on why you
think you are making this. It forces them to think
beyond, “I just want to make a game.”

My course is not about making something
that looks cool; it’s about the process of
understanding software systems as cultural
phenomena. It is about using code to increase
your sensitivity to tools like Facebook or other
platforms. If you know how data capture works,
then you can reflect on how you use Instagram
or other tools.

Allison Parrish
I am personally very excited by systems and by
rules and by the act of putting things together
programmatically, sometimes like a poet but
first and foremost like a computer programmer.
When I’m teaching classes it’s similar in that my
courses are about making computer programs
produce creative text towards an aesthetic
end...I have to focus a lot on the technical
aspects and say, “We’re going to learn this thing
that is applicable to all this conceptual stuff,
but we’re also going to learn how to make a
dictionary or learn how to parse text into parts

of speech.” ...Of course I would love to be able to
teach a class where every single student in the
class is completely devoted to exactly the same
concepts as I am and is motivated by exactly the
same things that I am, but that would actually
probably be boring. I really try to keep it half my
weird conceptual ideas and half programming
tutorials. The conceptual stuff is what allows
the programming stuff to be applied in a way
that’s not just a technical worksheet that
demonstrates mastery.

Tega Brain: You also require your students to
perform their work in public. Why do you do
that?

That’s for a couple of different reasons.
The first is that text as a medium has all of these
affordances...it can sit on a screen, it can be on
a printed page, [or] it can be transmitted into
language and read out loud. I think it would be
a disservice in a class that’s about language to
only use the one affordance of text on the screen.
People don’t usually think about procedural text
as something that you can read out loud, but
when I have the students read their work out
loud they learn new things about the text. It’s
like having another window into the language
because when you read text out loud you find
out the places where you have to breathe, what
sequences of words sound really good, what
sequences of words trip you up, how long it
takes to read.

When you’re reading out loud you also
become hyper-aware of other people’s reactions.
You can literally see when people get bored with
what you’re saying and use that in the feedback
loop to bring that back in and ask, “How am I
going to compute a textual artifact that has a
different curve when it comes to how people

201Interviews

are paying attention to it?”...I also find that it
keeps students a little bit on task and focused
because it means that students take a little more
responsibility for their work. They know it’s not
just something that’s gonna sit in a blog post
until the end of time. They know that for two
to five minutes of in-class time they’re actually
going to have to be there, in their body, allowing
their body to speak this text out loud. I find that
that makes the work a little bit more thoughtful
and a little bit more interesting.

202 Code as Creative Medium

The First Day

What do you do on the first day of class?

It’s the night before the semester begins and you can’t sleep for worrying
about tomorrow’s class. The first day is often nerve-racking; it’s a critical
moment to set the tone for the semester and shape student expectations. In
this section, our respondents discuss their different approaches to teaching
that first class of the term.

203Interviews

The First Day Zach Lieberman
On the first day of the School for Poetic
Computation we start with questions, and it
is really fascinating. We teachers come in and
explain a little bit about what we do and I ask
students to take 20–30 minutes by themselves
and write down every single question that
they have. And this creates a really interesting
and really strange moment. I want to know
whatever has brought them into the classroom
and what questions they had in mind. These
questions become signposts or markers for
what we talk about. So someone will say, “I
want to learn about X, Y, Z,” and someone
else will put up a response saying, “Come talk
to me.” Some questions are unanswerable,
like really deep and profound questions, and
I love that some students will try and cross
questions off the list as the class progresses.
I think it’s important grounding. A lot of times
you come into the classroom and the professor
gives you a syllabus and it’s like: here’s where
you’re going to go, here’s the journey we are
going to take, we’re going to cover these things
to get to that point. So it’s nice to start on the
first day and say: “What we are going to do
here is really driven by questions, driven by a
collective exploration of questioning.”

Daniel Shiffman
On the first day, I always feel very anxious all
morning before class. I wonder, “What am I
going to do for two and a half hours? I mean,
that’s so much time!” And then I over-prepare
and inevitably only get to like a tenth of what
I meant to. It’s different in different contexts,
but one of the things that I do if possible
is to not look at any code until the last five
minutes of class, if at all. In the past I’ve done
a conditional drawing exercise, where the

students pair up and one writes instructions that
the other has to draw.

Another thing that I also do is try to
have a discussion about historical context,
programming languages, and what it means to
program. Like, why should you program? If I’m
in a class of true beginners, I like to talk about
what programming languages the students have
heard of and what they think people do with
them. I ground everybody in a larger landscape,
which is a nice thing to do.

What I also find is useful is to show work
people have made in previous years and to
really focus on projects that do some social
good, or projects that just have this totally
nonsensical, playful quality with no practical
value whatsoever. It’s easy to imagine certain
kinds of interactive exhibits or certain kinds of
games, so I try to showcase projects that are
a bit different. One thing that I have become
much more conscious about recently is making
sure that...I have a diverse set of people who’ve
made the projects: from different communities,
different genders.

Lauren McCarthy
I like to tell a lot of jokes that nobody gets, and
if I keep it up, by Week 7 I might at least get a
pity laugh. In the introductory class we do a lot
of borrowed things, like “Conditional Design”
drawing exercises, which is also something
Casey Reas does. If I’m teaching JavaScript, we
pull up an example online and I show them how
to open the console and start messing with the
JavaScript or CSS that’s running to get to the
idea that it is all hackable. I also try to ask who’s
feeling nervous or scared or unhappy or thinks
they’re going to be bad at this class. I think a lot
of times everyone comes in thinking that they’re
the worst student in the class or that they’re

204 Code as Creative Medium

the only one who is not going to get it, and
sometimes I think that it is reassuring to see that
everyone is terrified.

Our Social Hacking class [taught with
Kyle McDonald] has special requirements.
On the very first day, we have students sign a
contract that says a few things. Firstly, that we
are asking them to experiment but that they
acknowledge that the experiments are theirs
so we’re not liable for their decisions. Also that
they take into consideration that they are doing
work that involves other people and that just
because these may be art projects, that doesn’t
give license to not respect a person. Also that
they acknowledge that we are asking them to
take risks and they must be willing to do that
or otherwise they should drop the class. Then
lastly, that as everyone is taking risks, we need to
respect that and not shut anyone down for doing
so and rather we each need to respond to this.
In this class everyone puts themselves out there,
and so we all need to put ourselves out there by
giving feedback about how other people’s work
makes us feel.

Winnie Soon
I usually explain the intention of why I choose
to work with particular tools. We talk about
how there are different coding languages and
different coding editors and I will talk about
why I chose GitLab to host my syllabus. Why
did I choose to work with p5.js? What are the
priorities of this software and how are values
embedded in software? In a way, choosing a tool
is a kind of politics and I want to set the scene
that the course is not about picking something
because it is efficient or good and then just
using it. I want to ask why you are using it and
what kind of values you are subscribing to. I
think that is quite important.

The second thing is more about creating a
space for them to speak. A lot of them have no
programming experience and they usually come
with a lot of fear and anxiety. I am very particular
and I ask them to say something about their
feelings about code. I want to focus on feelings
and the emotions attached to coding, rather than
on “why I want to learn C++” and so on. At the
end of the course in the year before, I always ask
the students for a sentence on a Post-It note on
what they want to channel to the students in the
coming year. How do you want them to prepare
for this course? Usually there are comments like,
“Coding can be queer.” “Be open.” “Coding can
be something very fun and conceptual.” “Don’t
expect code to always work.” They see these
Post-its with their peers’ words and it’s much
more convincing than me saying these things. I
usually stick them on the wall and ask them to
come and take a look. I want to set the scene
that this is a rigorous course, it’s difficult, but
you are not alone. If we work together, you can
pass through this just like these students who
are able to give you this advice.

The third thing I find very useful is to
ask them to think about a reason to attend this
course, beyond that it is mandatory. As coders
and teachers, we know that this stuff is not
easy. If they have zero coding experience, it’s
going to be difficult to sustain their motivation
throughout the entire course. So I want them to
think in the first class of why this is beneficial
for them, e.g., I can get a better job, I can
communicate between programmers and
business leaders, or I can understand the black
box of computing culture. Whatever it is. They
need to have a reason. I then emphasize this in
a lighthearted way. I tell them: remember what
you have written down and keep this motivation.
If you feel fear or anxiety about your work, get

205Interviews

these words out again and look at them and think
about why you want to learn and why you were
once motivated. This will be a helpful tool to pass
through the difficult times.

I try very hard to prepare them
psychologically for this challenging class and
remind them that we will work together. This is
the difference between an engineering class and
a non-engineering class. For engineering and
CS students, they have the motivation to learn
coding; they want to be programmers. But for
arts and humanities students, they are scared of
this weird language. And you have to find a way
to bridge that.

Heather Dewey-Hagborg
We talk about conceptual art and code as an
instruction-based medium. Then I have one
student stand at the board with a marker, and
then the other students instruct them how to
draw something...we go around the classroom
and the students each give an instruction to the
person. It’s fun and it helps them think about
how specific or not specific their instructions are.

Jer Thorp
I’m really aggressive on that first day and we do
a lot of things. At that point, everyone’s brains
are so pliable because it’s all foreign.... I’ve found
that the longer I wait to get to the trickier stuff,
the harder a time they have with it. Things start
to calcify in their brains, and that flexibility they
had on the first day disappears because they
are building these constructs. If I wait until the
fourth session to talk about what a class might
look like or what an object is, by that time they
are like, “Wait, wait, wait, no, this doesn’t mesh
with the construct that I’ve built in my brain
around this.” So if you put it in the first day, you
don’t have to teach it really heavily and they are
like “Oh. Okay, that’s how this works.”

Golan Levin: What about the first day of
an intermediate studio in information
visualization? What does that look like for you?

My information visualization class is half
theory and half practice, and there we take a
pretty different tack. On the first day in the first
half of the class, I write the word “data” up on
the board and we talk about what that word
means, which is actually an incredible little
rabbit hole. Everyone thinks they know what
it means, but nobody actually knows what it
means. Then we really talk about “Where does
data come from? What does that process mean?
What is it? How does it manifest? What do we
do with it?” What I’m trying to do is I’m trying
to get them to define what I think of as the data
pipeline. Data is the result of measurement,
and we then parse that data using computers
in some way, and then there’s a representation
step. I want them to make that map for me,
to start identifying interesting places to
intervene. For me, a data class is not about
that representation piece; it’s about the other
pieces because I think they’re so much more
interesting.

In the second half of that first day, I try to
get the students to create a dataset on the fly
and think about what that means. A simple one
is asking students to say what they think their
level of programming skill is between 0 and 10.
Then we take those 16 answers and do a very
simple plot of them, and then we come back
and say, “What would have happened if I would
have asked this question differently? What
would have happened if I would have given you
a clearer way to bound [your answer]? What
would have happened if I allowed you to share,
if the first person read their answer aloud, and
then the second person had to base their answer

206 Code as Creative Medium

on that person?” This gives the idea that these
numbers already carry a fantastic amount of
bias. Even in a really simple exercise like that,
you can’t really do it the “right way.” We can talk
all we want about how to represent that data,
but actually there are a million things that have
happened in producing it that have as much of
an effect, if not more of an effect, on what end
the reader will see.

Taeyoon Choi
I usually prepare a pretty long lecture. This
gets the students who are into it excited, and
also shows what the class is about to the ones
who are not into it so that they can see my
lecture and leave. I think this is a really good
thing. Also, when I write the course description,
it’s usually like four months before the course
actually starts and my idea of the class was
completely different [then]. This then becomes
a chance for me to realign what I want to do and
what students think the class is. I rarely teach
technical courses now, but when I do, it’s usually
contextualized, so it has some conceptual arc.
I explain what I can teach and what students
need to learn on their own. I try to make it clear
that learning technique is really hard, and it’s
dependent on where you’re coming from. I don’t
try to give them the expectation that they’ll be
good at technical stuff by the end of the course.

De Angela Duff
I try to demystify their fears, and let them know
that it’s not magical and that it takes what I
call “butt-in-seat time.” You just have to really
spend the time to either watch Dan Shiffman’s
videos, or read out of the Learning Processing
book. I cover more of the philosophy behind
programming. I also sort of quiz them and ask
them why are they here, beyond the class being

a requirement. I want to know their expectations,
and I try to get a sense of what their
programming background is. We don’t talk about
code or anything until probably the third class.
The very first assignment I give is actually having
the students create directions for something that
they do in life, just written instructions....I make
them do that before we even start talking about
code to draw upon the point that the computer
only does what you tell it to do....They then have
another classmate execute those instructions,
but they can’t discuss it. Like the person writing
the rules can’t talk to the person executing them.
The person who wrote the rules can observe
and then modify the written rules to improve
the outcome. I find that a very useful prompt for
getting people used to the idea that if you’re not
very direct and literal in your language, then the
program won’t execute, and it’s usually because
you haven’t broken it down in enough steps.

Tatsuo Sugimoto
Don’t be a maniac. The beginning of a class
is very important. The students’ first touch
and first experience with code makes a big
impression. Although as a teacher you want
to show your students that you have a deep
knowledge of the material, it’s more important to
go slowly and casually, and stay open to where
they are at.

Rune Madsen
I remind them that they are in the beginning of
a semester course. They are basically safe from
thinking too much because I’m going to take
away, I’m going to put so many constraints on
them in the assignments in the beginning that
their creative freedom is very small. So the first
assignment we do is at the end of the very first
class. I tell them to design an ice cream cone

207Interviews

using a triangle, an ellipse, and a rectangle, in
black and white only. If you’re young and you’re
a student and you’ve never designed before,
which many of my students haven’t, the whole
palette of everything that can be done is just
way too big. So I try to impose core constraints
and have them work on very specific things.
Like, how to position three basic shapes. How
do I make it say “ice cream cone”? How can I
make it say “sad” or “happy”? So the first class
is very much about, “You’re here. Don’t feel bad
about not knowing things, because I will make
the assignments so simple, that at least in the
beginning there’s nothing to worry about.”

Allison Parrish
In my text processing classes, I take them
straight into the UNIX command line tools. I do
this because the people who take my classes
usually have an OSX computer, so they have
all these tools already built-in and the UNIX
command line has this reputation of being
super forbidding and difficult to get into, or for
hackers only....Once they know how to open
this imposing terminal window and then type
something into it and make something happen,
it instantly feels good to be able to add that
to your repertoire. I focus on the command-
line text processing tools, tools like grep,
head, and tail and other commands that are
for transforming text in addition to tools for
searching. I relate that back to a conceptual
presentation, where we talk about work from the
Dada movement, conceptual writers, and poetry
from L=A=N=G=U=A=G=E [an avant-garde
poetry magazine, published between 1978 and
1981]—here’s how you can either repeat these
methodologies or their aesthetics using these
tools that are already on your computer and that
really are wonderful to use. Of course, I also

cover what the class is going to be about, but
[learning about the UNIX command line] makes
them feel powerful and like they have dug into
something that’s unique to this particular class.

208 Code as Creative Medium

Favorite Assignment

What’s your favorite assignment for computational arts students?

Like the riddles of the Sphinx, or the labors of Hercules, good assignments
have folkloric qualities. As in any oral tradition, the most memorable
assignments are passed from teacher to student, often with small changes.
They resist change, yet allow personalization. We asked our respondents
to describe the assignments that are closest to their hearts, or that yield
especially good classroom experiences.

209Interviews

Favorite Assignment Daniel Shiffman
Let me preface this by saying that sometimes
I feel like assignments are my weakness. The
tricky thing is to balance a feeling of open-
endedness with constraints, so that students can
feel creative and make their own thing, but the
assignment is not impossible.

I have two assignments to share. One is
from the Nature of Code course materials and
it’s for more of an advanced classroom, for
people who’ve already taken a full semester of
programming and who are now launching into
learning about motion, simulation, nature, and
physics. The assignment is to build your own
ecosystem. It’s really not a single assignment but
a project you might do over a long period of time.
It starts by learning to make this one little thing
move around the screen, and then later figuring
out how to make ten of those move around the
screen, and then how to make those ten things
see an obstacle in the environment, see each
other, and bounce and interact with each other.
So [students create] a whole ecosystem out
of little miniature parts. I really enjoy seeing
what kind of strange worlds people will create,
that either mirror things in our real world or are
fantastical inventions.

The other thing I really love doing in an
intro class is anything that fosters collaboration.
It’s really hard to do and is a much easier thing to
pull off in a physical computing class, although I
don’t actually teach that. But what I’ve observed
is that when you’re building something physical,
seeing where the collaboration comes in is
more obvious. When learning programming,
students tend to think they have to work solo
on code projects, when actually, large pieces
of software are built by teams of people. One
of the assignments I really like is to randomly
partner students and have them exchange bits

of code and you get these kind of Frankenstein
monsters, like, “I made the sun rise,” and “I made
a fish swimming,” and now they have a fish
swimming through a sunrise.

Golan Levin: That reminds me of an assignment
that John Maeda gave a long time ago, which
was to take someone else’s assignment from
last week and “improve” it or modify it.

Right. And where this can also work
well with is when teaching object-oriented
programming. I really like to say, “Make your
class and then give it to somebody else to
make objects from inside of their world.” What
I love about that is not just the collaboration
and having to talk to somebody, but that it
also teaches about open-source development
and making libraries. Students can’t just give
somebody else their code—they also have to
explain what all the functions do and invent
their own documentation, whether that’s
just explaining it in an email or with good
code comments.

Obviously if you were teaching a
more advanced class, you might have the
class use GitHub or whatever, and create a
documentation page. I like trying to keep that
spirit of collaboration, learning how to exchange
code and also learning about object-oriented
programming. All of that works well together.

Jer Thorp
One that works the best for me is the “drawing
tool” assignment and I often give it on the first
day. There’s something really rewarding about
making a drawing tool because you can quickly
get at what makes computational assistance
powerful, and students also get something
that they can share very quickly. One of my big

210 Code as Creative Medium

strategies for teaching designers and artists
how to code is to get them making as soon as
possible, and associated with that is sharing as
soon as possible. I want them to have something
that they can post on their feeds at the end of
three hours and because they are proud of it,
they get that little buzz. They get to say, “Check
out what I’m making,” and their friends are like,
“This is great! How did you do it?”

One of the other reasons I think that [this
assignment] works so well at the beginning
is that it gets people into this idea of the
modularity of programming. I say to them, “Let’s
look at the command to draw a line and the
command to draw a rectangle.” Even though
one command draws a line and the other draws
a rectangle, they both take four numbers and
so they’re actually interchangeable. I can just
drop the arguments for one into the other. In
the beginning of my first two or three classes,
the big focus is to get people to repeatedly
ask, “Every time you see a number, what would
happen if I put another number in there?” and
“Every time you see a method, what would
happen if I put another method in there?”
Because that’s where this stuff becomes
exciting....I want to get them into that Lego
method of programming as soon as possible,
and to see programs not as things that are
Krazy-Glued together, but as things that can be
taken apart and reassembled.

Golan Levin: Let me tweak the question. What
are some of your favorite prompts, specifically
in the field of information visualization—and
maybe prompts that are not necessarily for
beginners, but that can be approached by
anyone at different levels, including advanced
or intermediate students?

In an information visualization context,
the one that works the best is to take location-
based data and ask students to do something
with it that is not allowed to be on a map. I could
build a whole course around this assignment.
In my data class, students take a big data set
of something that is primarily latitude and
longitude but as they can’t plot it on a map, they
have to plot them in some other way. It’s really
nice because it kind of frees you from constraint.
It’s a different take on the exact same thing that
we were talking about before: I want people to
understand that there’s no rule that says that you
have to plot longitude as a line along a horizontal
axis. In binding my student’s arms a little and
saying “You are not allowed to put this on a
map,” it forces them to see it in a different way....
More than any other assignment, it gets them
thinking about our mental constructs that seem
to force us towards making one type of thing
with certain types of data.

Tatsuo Sugimoto
I am often teaching students who have never
been involved in programming, so I focus on
getting rid of their fear. In a recent class on
data visualization, my first assignment used
hand drawing based on personal data and took
inspiration from a project called Dear Data by
Giorgia Lupi and Stefanie Posavec. First of all,
I had the students discuss what they wanted
to record in their everyday lives; they chose to
look at the dishes and cutlery they use for each
meal. So for a week they recorded what items
they used to eat with in a spreadsheet and then
they had to convert this data to hand drawings. I
think it’s important to start without coding, but
then afterwards I have them interpret their hand
drawings in JavaScript.

211Interviews

Lauren McCarthy
In my introductory classes, one of my favorite
assignments is for learning parameters and
variables. The assignment is to create a sketch
where there’s a change of perspective as you
move your mouse across the screen. The
question is, how can you subvert the viewer’s
expectations when they move the mouse? I
often show some examples of this from other
areas of art, such a video performance work by
Anya Liftig and Caitlin Berrigan called Adoring
Appetite. In this piece, the two artists pushed
strollers around NYC, snuggling and kissing their
babies. At some point, the kissing turns to biting
and eating, and they chew through the babies’
heads, which turn out to be made of sugar and
filled with red jelly. I ask my students, “What
would it look like to create an experience this
affecting with code?”

I also like the assignments for my more
advanced Social Hacking course. My favorite
one is where you have to create an API for an
aspect of yourself or your life. Students have
to pick something and make it controllable
somehow by someone else. This is done either
using a data feed or by opening up a question to
the public; usually it’s the second thing. Another
one that can go anywhere is I instruct them to
create something such as a browser extension,
or app or whatever, but they have to make it
for one specific person. Students then must
start with the person rather than the idea, and
I think this helps because it’s a different design
process. When you are just making something
for yourself, it’s easy to not be thinking really
clearly about why you’re making [certain]
decisions, but if you are thinking about someone
else, then you’re forced to imagine the user
experience a little more.

The last exercise I like to do is have
students write down what they are going to do
that week, usually the steps they’ll take when
working towards a final project. I ask them to
write down exactly what tasks they are going to
accomplish, and a time estimate for each one.
Then throughout the week they are asked to time
each task. We then have a debrief afterwards,
and they’re like: “Well, I thought I was just
going to make a simple data viz connecting only
one stream of information.” And we find these
buzzwords: if you use the word “just,” multiply
your estimate by two; if you say “simple,”
multiply by four. It’s really common that people
do not easily anticipate how long things take.

Phœnix Perry
I like to get people to think about the kinds of
things they can do with gaming—and not just
video games, but gaming more broadly. For
example, maybe you want to use a sensor and
you want to track someone’s position. I’ll show
them the games I’ve made—for example, where
you can knock things with your head, or when
you scream and something happens. I try to
expand the possibilities and get them to just
dream up crazy games. If the sky’s the limit,
what are some things that you would like to try
and do? Around the same time, I introduce the
idea of pervasive gaming [games in which the
play experience is extended into the physical
world], and you can get them thinking about play
outside of the computer. That really works well
if you have a mix of artists and game designers,
because they can synthesize their interests
in a really fascinating way and make games
that have nothing to do with the computer and
that have very simple rules. I think that that’s a
really empowering experience that isn’t tied to a
prior skillset.

212 Code as Creative Medium

Rune Madsen
My midterm assignment is always to make a
dynamic logo that never looks the same when
you run the code. I think that’s a very typical
assignment for me. But for my “favorite,” I think
I’ll go with another assignment, which is my
week on computational typography. Before
every semester I always consider cutting this
week out entirely, because typography is such a
handmade thing; with typefaces, you really need
that finesse of tweaking everything. I go to the
students and ask them to build a typeface (or
just design a typeface for a specific word so they
don’t have to do the whole alphabet) that has to
come from a core set of rules. That means it has
to be better done in code than by hand. And that
is as broad as it can be: Make a typeface that is
better done in code than by hand. For example,
each letter in the typeface can be defined as an
object in an array. I need to be able to loop over it
and use the same process in the for-loop to draw
each letter.

This was inspired by John Maeda. [He] has
this example in one of his early books, I think
it’s a pie typeface, two pie charts are kind of
overlapping to make an alphabet. [Note: Madsen
is referring to “Type Me, Type Me Not” by Peter
Cho, shown in our Modular Alphabet assignment.]
And my students just always surprise me,
making crazy things like sine and cosine fonts.
The creativity of the students always amazes me
in that assignment.

Heather Dewey-Hagborg
In my BioArt class, the first assignment starts
by looking at the future of synthetic biology,
genetic engineering, and design futuring. I
use a speculative design approach, and the
assignment is to design a product or service
that anticipates where genetic engineering or

synthetic biology is going in, say, the next 100
years. The students then come up with a sketch
of the product or service and also write a page
on the future they have envisioned and how that
product has an impact on society.

Tega Brain: So it is a critical project that they
don’t actually have to build in a working form? It
can remain entirely speculative so long as it has
a criticality to it?

Exactly. In that module we also perform
genetic engineering experiments, so the
students have some hands-on engagement
with these processes and so they understand
some of the limits of what’s possible. But this
assignment encourages them to think beyond
what they are capable of actually doing. A
semester is not enough time for them to really
do anything significant with something like
genetic engineering. This way, they get some
experience in a lab where they learn what the
processes look like, and then I’m asking them to
think about where this work is going and what
future we are building.

Zach Lieberman
The best assignment that I have is to study and
recreate work from an artist from the past. A
common example is where I ask students to
take the work of James and John Whitney as a
starting point and [have them] approach it in
two ways. First is to make something inspired
by their work—to take a look at their body of
work and add a comment to it. [Next I have
them] focus on replication and come up with a
faithful copy. The ReCode Project by Matthew
Epler does a great job at presenting both of
these approaches side by side. This assignment
can then also be used as a method to talk about

213Interviews

how people were working in the ‘50s, ‘60s,
‘70s and to talk about different computational
approaches. I like that it allows you to talk about
the past and history and not just the technology
and code. Taking an in-depth look at the work
of another artist, rather than responding to an
open-ended prompt, pushes students to produce
better results and to take the work they are
doing more seriously.

Luke DuBois
If I’m teaching an audio class with Max/MSP, I’ll
have everybody build a flanger. A flanger plays
two copies of the same sound simultaneously,
but slightly offset in time.

Every audio effect on the planet can be
demonstrated using the guitar solo from Jimi
Hendrix’s version of Bob Dylan’s “All Along the
Watchtower.” Hendrix’s secret weapon was this
guy Roger Mayer, who built guitar pedals for him
that nobody else had. He had the first wah-wah
and the first pedal flanger. The flanger originally
was a studio technique because the flange refers
to manipulating the inner reel of the tape and
so it had to be done in the studio. But Mayer
figured out how to do it with a capacitor in his
delays. The ”All Along the Watchtower” solo
has Hendrix switching pickups on his guitar,
going from picks to fingering to slide, plus a
distortion pedal, an echo pedal, a core, a flanger,
and a wah-wah. In that moment in between the
second and third verse, you can learn pretty
much everything you need to know about audio
signal processing....I usually start by playing that
and then I show them how to make a delay line
and add feedback. I give them the assignment of
figuring out how to tweak all the values to make
a flanger in Max or something similar, and then
they have to bring in a record that uses a flanger
and a recording of them copying it. Like bring

in a Siouxsie and the Banshees tune, or Kanye
West. Kanye uses flangers all over the place. I
have my students do this because it’s a really
simple Max patch to build.

De Angela Duff
I have the students draw something either by
hand or in Adobe Illustrator using only basic
shapes: triangles, squares, circles, and lines.
Then I ask them to recreate that drawing using
code. It’s really important that it’s something
that they draw themselves instead of recreating
a painting, because there are a lot of examples
of that online from which they could just copy
the code.

Tega Brain: I’ve always wanted to try to start
the term with a figure drawing class, but using
Processing—hire a nude model to sit for my
first programming class and have students
represent him or her in code.

Right! I think drawing is useful because
some people aren’t practiced in it. They think
they can’t draw and just to have them engaged
with that creative exercise is really important,
even if they are just drawing stick figures.

Winnie Soon
My favorite assignment for design students
is about rule-based systems in relation to
generativity, generative art, and emergence.
In this assignment, I ask them to start with a
paper and pen and write down two or three
instructions. You can’t have your outcome in
mind first; you need to just start with rules and
from there you start to program these rules and
they unfold over time. I usually introduce this
in week six or seven and it is fascinating for me
because in the first six classes they are given

214 Code as Creative Medium

more direct tasks—like they have to make a flow
bar, an icon, or an emoticon. They are able to
visualise what they want to make before they
code it. But then when you suddenly introduce a
rule-based system they are like “WHAT!? WHAT
are you talking about?” It’s very difficult for them
as designers to comprehend this concept. Like
10 PRINT or Game of Life, it’s just a different
way of thinking. It allows me to talk about
things like chaos, noise, ordering, simulations,
authorship—whether the machine is co-creating
with you. It also lets me introduce conceptual art
and conceptual thinking and focus on process
rather than the end result. I’m really able to
contemplate how things unfold over time, which
I think is a really important perspective from
which to think about programming.

216 Code as Creative Medium

When Things Go Wrong

What happens on your worst day?

Code is a brittle medium. There’s a steep cliff of failure; a simple, easy-to-
miss syntax error will often prevent a program from compiling altogether.
All software educators will experience this publicly at some stage and find
themselves sweating in front of a room full of impatient students while
desperately debugging. Teaching media arts also demands that instructors
constantly keep abreast of ever-changing development environments and
new technologies, many of which are likely to be peripheral to their primary
field of expertise. Meanwhile, operating systems update themselves, familiar
tools abruptly become obsolete or incompatible, and cherished references
unexpectedly disappear from the Internet. For these reasons the creative
programming teacher is particularly prone to having to work through
mistakes and errors live in the classroom, often while attempting to maintain
the interest of skeptical and apprehensive pupils. Our respondents discuss
the days when stuff breaks and nothing goes right.

217Interviews

When Things Go Wrong Daniel Shiffman
I have moments where nothing is working
and I can’t figure it out, but apparently these
moments are useful. People tell me this about
the [Coding Train] videos all the time. Like, “My
favorite part was when you couldn’t figure it out
and you got stuck for like ten minutes, because
I like to see how that happens to everybody,” or
“I like to see the way you tried to fix it.” Even so,
these moments can be really bad and stressful.
There’ve been times when I get completely
tripped up in my own head, trying to explain
something like a Markov chain and just feeling
like, “That was the worst explanation ever; it
made no sense! I should have practiced that.”

Golan Levin: It’s interesting how you do practice
your explanations. It’s very obvious in your case,
because you live this out more publicly than
the rest of us through your video channel. It’s
quite clear that all of your explanations are very
patiently refined and revised through practice.

I’ve been doing the videos for a while,
but recently they clicked for me as I was just
more mentally focused on them. I used to do
the videos to get ready for class, but now I use
the class to practice for the videos. I’m like
those comedians who go to comedy clubs to try
material out before their TV specials.

Also, if I have the same class that meets
two days in a row, I can never have them both
go well. It’s either that the first day is amazing,
and then I try to force that to happen again the
second day and it fails—or the first day kind of
goes haywire, and it motivates me to fix it all the
next day.

Winnie Soon
I just had one two weeks ago. The worst day is
where nothing works. You think it works and
then when everyone runs it you find all these
different problems and you have to follow up
and figure out if it’s their system, version, or
browser, and you even don’t know why it’s not
working. And then you need to pretend it’s OK
and actually in your heart you’re like ARRGH,
how come it’s not working? Maybe it’s good to
have this kind of disruption because it allows
the students to see the imperfect aspect of
programming, which is also the reality, but at
the same time you need to be mentally strong
to handle this situation. You also have to know
how to turn it around and make up something on
the fly so that you can still cover the content you
have to cover.

Luke DuBois
I’ve had classes where things just fail. My first
attempt at setting up a cloud-like Node server
was the perfect storm clusterfuck. I wanted
to show how to do a socket IO thing where we
could all kick something up to a cloud and get
a response. And that fucker just didn’t want to
work. I had some problem with my .ssh directory
that wouldn’t allow me to log into the thing and
it took me 45 minutes to debug. Well, it felt like
45 minutes. It was probably only 15 minutes, but
it was right in front of the students. Everything
was a mess. It was bad.

On the music side I once taught a terrible,
terrible class involving a Disklavier [digital
piano]. Its default is that there’s always a half-
second delay on the song, and there’s a safety
switch that you flip off, and I could not for the
life of me figure this out. They built this into the
hardware to prevent feedback, to prevent you
from hitting a key and then getting drilled down

218 Code as Creative Medium

and grinding the whole thing and breaking it. I
had this beautiful piece of repertoire by Kaija
Saariaho, who is the composer laureate of
Finland and has a really great Disklavier piece.
And I, Luke DuBois, with four years of piano and
graduate studies, can actually play this piece, as
it’s not hard and it’s part of an undergraduate
pedagogy study she wrote in the ‘90s. But I
couldn’t get this fucking 500-millisecond thing
off and I went ballistic on the piano. I went into
this psychotic cursing fit, where there was no
stopping me. I sounded like fucking Don Rickles
at one of those comedy roasts in the ‘70s. I was
like, “You lousy fucking half-assed goddamned
piece of shit, I’m going to fly to Tokyo tonight
and single-handedly beat the shit out of the
entire drum, guitar, and motorcycle division of
Yamaha for foisting this piece of garbage on us.”
That was my worst day of teaching.

De Angela Duff
This is not necessarily my worst day but more a
realization of something that was not working. I
used to go through a lot of code in class, like line
by line, and I would dissect code and explain it.
When you know how to code, it’s clear as day,
but it’s like noise for the newbies. Many of them
create this narrative in their head that they’re
not good with programming or with math. Then
I’d say to somebody in the class, “Tell me what
I just said,” and they can’t regurgitate it even
one minute after I said it. I realized that actually
explaining code line by line is such a waste of
time. So I guess my worst days were those days
when I thought I was teaching something but I
wasn’t—it was all just noise.

Allison Parrish
I think the worst days for me were the days
when I was teaching a programming class in the

English department. I had lost half the students,
like half of the students were not really keeping
up with the content of the class, but I still had
this very strict schedule that I wanted to follow
so that the class could reach its conclusion
conceptually. So there were one or two days
when I was just like gritting my teeth and doing
the tutorial even though I knew that half the
students weren’t able to follow along.

Much of my teaching experience has been
in grad school environments at schools like ITP,
where the students are so internally motivated
to keep up and wanting to extract value from
the class no matter how poorly it’s coming.
Undergrads, on the other hand, will check out
if you are not connecting with them. So having
that experience in the English department and
having students check out on you for the first
time kind of sucked a lot. But I learned from that
experience.

Lauren McCarthy
I think it is worth saying that as a teacher, you
are there to motivate and encourage everyone,
and sometimes that’s hard. It’s tiring, and it
doesn’t always feel OK to admit that. In other
jobs somehow it feels easier to talk about how
it’s hard, and I guess we do that too sometimes
with fellow teachers. But often it feels like
there is a pressure to always be like: “Hurrah!
Everything is great!” Maybe that’s a buzzkill, but
I think it’s good to say sometimes.

Jer Thorp
I taught a programming class for a few years at
Vancouver Film School. It was a required class,
and that sucked, as half the students didn’t want
to be there. You’re always able to recruit some
of them, but some of them don’t care. This is a
school where most of the parents pay the tuition

219Interviews

and throw them in there because the kids don’t
know what they want to do. Being in a roomful
of students who don’t care is really hard, even
though I think I’m pretty good at getting people
who might not otherwise care to care.

Taeyoon Choi
I once brought resistors to class to make a
flip-flop memory unit. It’s made from just two
transistors, two resistors, and one LED; it’s a
really simple component. Some of the resistors
are colored brown, but they can look red when
it’s dark. I think I might be a little bit colorblind
or maybe I was in a hurry, so I accidentally
brought the brown one, which has a different
value than the red resistor, and none of the
examples worked in the classroom. I was going
nuts because I tested it so many times. It was
so frustrating and I was just sweating like crazy
and I was so embarrassed. Not only did it make
me look bad, but [I feel like a public mistake
like that] discourages students from exploring
electronics and technology.

At the start, students need to have
immediate feedback, like, the thing should work.
Luckily I figured it out at the end of the class
and some students had resistors of the right
value and we switched them and everything
worked. But I was definitely underprepared and
got totally lost, and was hating myself for not
being prepared.

220 Code as Creative Medium

Most Memorable Response

What was the most memorable response to an assignment you’ve given?

There may be no better proof of an assignment’s educational potential than
a surprising student response. Here, we ask educators to reminisce about
students who responded to assignments in ways that were subversive, or
unexpected, or indicative of significant learning. These memories reveal
how assignments are not only a fulcrum for student growth, but can lead to
greater understanding for the instructor themselves.

221Interviews

Most Memorable Response Taeyoon Choi
The most heartwarming response I’ve had was
when Andy Clymer from the first School for
Poetic Computation class saw me two years
after he finished the program and said, “I’m still
working on your homework.” He’s a fantastic
type designer who does generative fonts and I
helped get him excited about electronics. He got
really into synthesizers and robotics from some
of the workshops that I did. It’s funny because
the workshop itself was not that successful; it
was one of my first classes teaching technical
things and I don’t think I was really ready
to be the teacher. Still, we tried to adopt a
collaborative approach where the students took
the lead at the end of the course and told us
what they learned, and hearing that he continued
from where we left off probably made this one of
my best teaching experiences.

Winnie Soon
Well, this was a response to the whole semester
and not just one assignment. One of the
students wrote down in the course evaluation
that she realized that coding is not just a
gentleman’s club. And just with that line I felt
like I actually achieved something. I know that
the NYC coding scene is much more focused on
diversity, but in many parts of the world, gender
is still very problematic.

Phœnix Perry
Don’t be afraid to be a bitch. Don’t be afraid
to tear somebody down. Some of the most
rewarding responses I’ve had have come from
students to whom I gave very negative feedback
early on about a bad idea. And they’ve taken
my feedback as kind of fuel for the fire and
they’ve either proven me totally wrong, or they’ve
improved their concept significantly by the time

I see it again. For example, I had one student
who wanted to make an Oculus Rift VR game
and he told me his original idea, and I was like,
“This is total shit. I don’t like it at all. It’s not
interesting, it’s not new, I don’t want you to just
make a space shooter. Why use the Oculus Rift
to make a space shooter? What are you bringing
to this?” So what he decided to do was make a
rhythm-based space shooter and he used the
diegesis of the cockpit to be the control system
for the game. You had to look toward the rhythm
of the beat, and the beat got stratified. So when
the tom drum beat, one kind of object would
shoot out, and you would have to go look at that
location to stop it. If you heard a bass drum beat,
you would have to look over at the other location.
And doing this would destroy the object that was
making the bass beat. It was really fun because
then the act of turning your head, looking up and
down and around, became satisfying because
you were doing it on rhythm and at a pulse.

Another student project that really broke
my brain, and I’ve never actually seen anyone
do anything like this before, was by a kid named
James Cameron. I gave a game assignment,
and he wanted to make a horror game that
connected through to the real world. He made
this horror video game, and it’s a really terrible
scenario, like a murder has occurred, and all of
a sudden you see a phone in the VR, and when
you touch the phone your actual cell phone
rings. Then the characters start calling you and
leaving you messages during the day and they’re
prompting you to kind of play out this story. That
was really amazing, even though his original idea
was not spectacular. I was really hard on this
kid in his exams—like he missed a semicolon on
something and I drew a pirate and wrote, “Now
walk the plank.” I think sometimes teachers want
to make students feel really good and sometimes

222 Code as Creative Medium

that’s not the goal. Sometimes you want to make
them question if something is worth their time
and how they can bring something new to it.

Lauren McCarthy
For me, the things that are the most memorable
are usually less about the output and more
about the process. Like seeing that student
who is really struggling in the first few weeks,
and then every week, rather than just doing
the assignment, she does five versions of the
assignment. Then by the end she’s a great
programmer with a really strong concept in her
final project. That’s the sort of thing that really
sticks with me. In terms of specific responses,
one of my students did a project when she was
just learning to code where she would go up and
ask people for their Processing sketches, like the
code itself. She would then try to draw by hand
what the outcome would be and after would run
the sketch to see how close she could get.

Tega Brain: That’s novel, and courageous for
a beginner.

Yeah. Let’s see, there’s another one that
is not such a crazy concept itself, but I really
liked where the two students were coming
from. The project was called “Not Lost in
Translation” and they basically made a chat app
for themselves. They both spoke English but
with a strong accent. And they felt like people
didn’t understand them a lot. They first just
wanted to make something that would translate
into the opposite language, but then when they
hit some technical barriers, they changed their
concept so that you would speak, and you could
choose English, or Hindu, or Korean, or whatever
language you are speaking. And then it would
do a Google Translate of that, and then a Google

image search. It would just show the other
person a pictogram of what they had said, and
then the person would respond by speaking and
it would show another pictogram. So the result
is totally nonsense, but it was nicely executed.

Then the last one I remember was my
student Ben Kauffman’s response to the API
assignment, where you have to make some
aspect of your life controllable. His project was
super simple: if you messaged him with the
hashtag #brainstamp, he would pull a postcard
out of his pocket, mark down whatever he was
thinking at that moment, and drop it in the next
mailbox that he saw.

Zach Lieberman
My department head asked me to teach a class
on artistic data visualization, and I’m a fan of
artistic data work but I’m not a fan of much data
visualization, and so I was conflicted the whole
time I was teaching it, and I really brought that
energy into the classroom. But in that class there
were folks like Evan Roth and Christine Sugrue.
They took these prompts and really created
artworks out of them—things like Evan Roth’s
project Explicit Content Only, a record composed
entirely of swear words extracted from a rap
album. They took the prompts that I was giving
them and created things that would stand in a
gallery or would be written about in a blog. For
me it’s really exciting as a teacher when your
students create work that is noteworthy, work
that gets people writing or talking about it,
because you start to see that feedback loop with
culture, which is great. As a practitioner there is
a feedback loop of making something, reaching
an audience, and getting feedback from it.
[Without that cycle,] it’s otherwise really hard to
understand the value of what you do. For me, the
most exciting prompts are the ones that result in
work that makes it out there in the world.

223Interviews

Luke DuBois
In my creative coding class, I do an assignment
where I show the floor of the Alhambra Palace
and explain how it’s a Lindenmayer system,
how it can be re-created with an L-system. I
then give them a basic turtle graphic sketch in
p5.js and give them a couple ideas for how to
do Lindenmayer systems and a bunch of links,
and tell them to figure it out. I had a student
L-system his way toward a perfect replica of this
mandala that’s in some crazy third-century CE
Hindustani temple in his hometown—Calcutta,
if I remember. He remembered it, like he knew it
visually, and he was like, “There’s got to be a way
I can make this thing.” It’s kind of like a space-
filling curve, like a Koch curve, so it’s not too
hard to do. Most of the kids made these weird
turtle graphics things—mazes or Sierpinski
triangles or some of those bullshit fractal 101
things. But this kid showed a Google Earth
photo of the temple, an image of its ceiling; he
hit play on the sketch and walked away. What
really stood out was the personal connection
he had to the form, which clearly motivated his
craft. All the other kids were just like, “Fuuuuck.”

Allison Parrish
It was by my student Susan Stock, and it’s a
program that produces a poem. It’s based on
a poem that she wrote about a friend of hers.
She passed the poem through this procedure
that randomly repeated small segments of the
text, so that it feels like her record is skipping.
It keeps on moving back into the text so that
it has to kinda catch up to itself. It’s called
“Susan’s Scratch.” And she gave this reading of
it in class and it was really affecting, because
it was personal. I think that with procedural art
in general it’s harder, or seen as less desirable,
to get at the lyrical, the emotional, or the

personal.... It was clear that the procedure
brought out something in the original text that
wasn’t there to begin with.

I think [this] was for my midterm
assignment, which is to invent a new form of
poetry and then write a computer program that
attempts to write poems in that form. The thing
that I remember is that once Susan presented
this, it was like a switch flipped in my head. I
realized I can teach my students how to make
jokes with this, I can teach my students how
to do data analysis with this stuff, I can teach
my students how to be postmodern jerks with
procedural text. “Susan’s Scratch” just made
me think: Oh, wait a second, the emotional
range of this is way, way larger than I had
originally conceived.

Tega Brain: And of course computers are rarely
framed as emotional or for exploring emotion;
they are not perceived as having enough
ambiguity or unpredictability.

Absolutely. I think that’s understandable
considering the history of the medium. People
in general don’t think that systems can be
expressive. They’re not perceived as having
intentionality. People often don’t see the act of
making rules as being the same thing as the
act of writing a poem. And this is sort of what I
am trying to attack in my teaching—to say that
actually, the process of designing a computer
program, designing a poetic form, or designing
a game are all processes, and the system that
creates these artifacts is itself a thing that can
contain lyricism and emotion and a personal
point of view. In fact, it has to have a personal
point of view and we shouldn’t ignore the
personal aspect of that kind of making.

224 Code as Creative Medium

Advice for New Educators

What’s your advice for educators teaching arts-programming for the first time?

In teaching media artists and computational designers, we need to cultivate
multiple skills: a sharp eye, a critical perspective, technological craft, and
passion for the field. And we must support the student’s ability to connect
these capabilities in practice. The following conversations navigate this
terrain, outlining a range of tactics, tips, and lessons learned the hard way.

225Interviews

Advice for New Educators Jer Thorp
When teaching programming to non-
programmers, and specifically to designers
and artists, I think it’s really important to say in
the beginning, “My intent here is not to make
you into a programmer. I think you should
continue being a printmaker, or a typographer or
whatever you are. My intent is to give you some
computational tools that will help you.” Also, get
your students making things as soon as you can.
For me that has to be ten minutes into the class.
We write a really simple four-line Processing
sketch that does something really easy and gets
them there right away. Don’t stop to talk about
what the IDE is and what syntax looks like, or
what a semicolon means. That stuff sucks. You
need it but it sucks. Do the making first, then
use that to go back and talk about it after.

Zach Lieberman
Every time I give out homework, I always say that
every homework assignment is an opportunity
for genius. The most important advice is to have
that sort of optimism, to have that sort of energy
for your students with every prompt and every
time you ask them to do something or engage in
something. Learning code can be frustrating and
it requires a lot of time and a lot of failure. Time
and failure and misunderstanding. To imbue
a sense of optimism here is so important—to
celebrate this as a new mode of working and
to help students to realize that there’s all these
untapped ideas out there. Also, anything that
can turn the classroom into a mini film festival
is really great. I think it’s important as a teacher
to show what you’re curious about, to show what
inspires you, and to be able to talk elegantly
or passionately about what moves you, as that
helps students articulate what moves them. By
showing these references and using them as a

context to talk about code, it can help students
translate and articulate what they care about.

Lauren McCarthy
Something that I read that really stuck with
me is that as soon as you figure out something
that was confusing you, your brain immediately
forgets what it feels like to be confused. Your
synapses will fire in a way so that you’re not
confused anymore. So you learn to code and
it clicks. You ride a bike, and then you can’t
remember how to not ride a bike and for that
reason, it’s sometimes really hard to remember
that feeling of confusion. So...before office
hours, I try to think about something that’s really
confusing, or I try to imagine myself back in
the lab as a student. I really try to tap into that
feeling of frustration, that confusion when things
don’t just click....By trying to take yourself back
there as a teacher, particularly if there’s a lot of
students you need to help, it helps you connect
with them more.

Tega Brain: That’s fascinating. There have been
times when teaching a class for the first time
where I’ve received some unexpectedly good
results and reviews, especially for material
slightly outside my skill set. Then once I’ve
taught it a few more times and I know the
material really well, I think it gets harder to
empathize. After those first couple of times
I often feel like I’m actually getting worse at
teaching it, which is really not intuitive. So as
first-time educators your inexperience can
actually be a positive thing, because you are
more likely to relate to students and understand
what they are going through.

Totally. I think the other thing is just
modeling belief, as this can change a student’s

226 Code as Creative Medium

world. I think probably everyone who has ever
done something or been successful has had
someone who believed in them and made that
clear, and helped the student understand how to
believe in themselves. I think about that a lot.

Rune Madsen
Don’t be afraid that you don’t know enough. I
was so afraid that I would get questions I didn’t
know how to answer. And that’s not really what
makes you a good teacher. Some of the best
teachers I know learned programming at ITP
and started teaching programming just a few
years after. Because they were so close to
the material, they understood how to explain
concepts—they remember how it felt not
knowing. Something that comes with being
afraid when you teach the first time is that you
over-prepare, you rush through materials.
You’re afraid of not teaching enough, so you
squeeze every last bit of information into this
long lecture. And then you and all the students
in the class say, “What the hell was that?” I
would say, take your time. Breathe.

That, and maintaining a good balance
between talking and doing. It’s okay to switch
activities a lot and be clear about, “OK, now I’m
going to talk, so please put your laptops down.
I’m going to explain things. You don’t need to
copy my code. You just need to look at it. I’ll
leave the code on the screen, and then in 15
minutes from now open your laptops and let’s try
to work together.” So you have to be vocal about
what you’re doing in the classroom. And this mix
of lecture and hands-on doing is a style that has
worked really well for me.

Daniel Shiffman
Well, I continually make the same mistakes over
and over again, and one piece of advice I have

is to do a lot less than you think you can do. As
a long-time neurotic, I am a way over-preparer.
For example, I was teaching a new class this
semester and I ended up making 30 examples
when there was only time to look at like two
or three in class. One thing I’ve often done is
to assume that because I made all this stuff, I
have to get to it all. Then when there’s only ten
minutes left of class, I would try to rush through
the rest of it. In my opinion, it’s definitely much
better to slow down and leave stuff out. You
can always get to it later, or you can send out an
email, or not do it at all.

Obviously, I’ve been doing a lot with videos
[The Coding Train on YouTube] and that’s part of
an attempt to create an environment where there
is some quality of self-paced learning. If you
can do this or foster some collaborative learning
where the students are working in smaller
groups or individually in a kind of workshop
setting, it’s a really good thing. Much better
than rushing through a lecture and showing 500
examples in 15 minutes.

Also, don’t overlook teaching students how
to ask for help. That’s a huge part of the learning
process. You can’t just teach the programming;
you’ve also got to teach how to get help, like:
“How do you ask? What’s the right question to
ask? When do you write, how do you debug?”
All of that type of stuff can easily be lost in the
“here’s the lesson”-type approach.

De Angela Duff
I would recommend that first-time educators
check out Daniel Shiffman’s videos. I love these
videos. Some of my students don’t like them
because they don’t think they’re serious enough.
They think somehow that they shouldn’t be
having fun learning, which sort of blows my
mind. But I think it’s seriously important for first-

227Interviews

time teachers to witness the enthusiasm that
Dan Shiffman has about teaching programming.

I would also recommend doing something
similar to what I tell my students to do, which
is to look at multiple books to see which
book they prefer. Look at as many syllabi as
you can find. There’s a lot on GitHub. I don’t
recommend following what someone has done
before because I think that teaching should be
a creative process; crafting your syllabus should
also be a creative process, and you shouldn’t just
be following someone else’s syllabus. However,
it’s a good way to get assignment ideas and to
get to know how certain assignments are just
sort of classics.

One thing I do with my students is called
“ticket to leave.” Towards the end of class, I give
out sticky notes or pieces of paper (but it could
be done online). And I tell students to write down
three questions that they might have about
any of the material that was covered and also
to list three key points that they got from what
we did in class that day. That way, I can find
out what stuck and what the problems were. I
think that’s a really awesome tool, because then
at the beginning of the next class I answer the
questions and maybe see something that didn’t
stick overall. Then I’ll go over it again.

Heather Dewey-Hagborg
I would tell first-time educators to try to teach
what they are enthusiastic about, what they
actually care about. If the technical aspects
matter less than their enthusiasm for the
subject, then they shouldn’t feel like they have to
get up there and lecture about code. It’s possible
to engage students in lots of different ways. The
most important thing is to share what is exciting
to you about the practice of programming.

When I started out as a freshman, I
really didn’t have any kind of interaction with
technology whatsoever; in fact, I was probably
pretty anti-technology. Then in my first year I
took a conceptual art class that included a lot
of references to media art, the beginnings of
Dada and Fluxus and installation art, and that
got me excited about learning some of the tools
of new media, which led me into doing some
work with sound and video. Then as I started
working more with sound in particular, I felt very
distant from the medium. Having come from a
more materially engaged practice like sculpture
and installation, I felt like when I was working
with sound I was removed from the material. I
was using a software interface but I felt distant
from it, so I signed up for an introductory
programming class, a Python class. In part, I
signed up for it because of the title, which was
Thinking with Objects. I liked that because I
thought it sounded very physical and visual.
Of course, I didn’t know it just meant object-
oriented code, but luckily the professor was
really fascinating—a brilliant, brilliant man
who, even in that intro class, started tying the
code into ideas about neural networking and
genetic algorithms.

Even though we were total beginners
and we couldn’t quite understand what he
was saying, he provided these very visual
explanations of neural networks and of
organisms and I found that really exciting. Again,
I probably would have never continued with
it except that he specifically came to me and
said, “You should consider taking the Artificial
Intelligence class.” If he hadn’t gone out of
his way to invite me to take this class, I would
have thought I wasn’t good enough to do it, but
because he did I became curious about it, and
then I took it and really loved it. This kind of

228 Code as Creative Medium

faith in students can make a huge difference. It’s
what launched me into this whole algorithmic
direction.

Taeyoon Choi
Teaching a very small group of students, like
maybe less than five people, can be really
instructive...you get much higher-resolution
feedback on how the material is being received.
I also think drawing is really helpful. I draw a
lot before the class and during the class and I
sometimes draw the same thing over and over
again. The idea is that I’m performing a drawing
and it gives the students the time to think
with me about how knowledge is processed.
I encourage them to make drawings in their
sketchbook as well and then they end up with
their own textbook in a way—an explanatory text
that they processed themselves.

It’s also helpful to understand that not all
students are going to appreciate what you teach.
If I get twenty percent of the students excited
about what I do, I call it a good day. Teaching is a
really difficult thing to do.

Winnie Soon
I really want to emphasize this notion of
care, care in a lot of different ways. Care in
terms of whether you can create and sustain
a motivated and positive space for learning
and discussion and for just saying vulnerable
stuff like something is not working. Also care
for a diverse range of responses, because as a
teacher you see some work that is technically
strong and some [that shows] the students are
struggling—like where they are just changing
the values of the parameters. But still they need
encouragement, they need appreciation. I think
you need to be really sensitive to those students
who are unmotivated and falling behind, who

have fear and stress. You need to think about
how fast you speak, how much repetition you
need to have in order to adjust the energy of
the classroom.

Phœnix Perry
My advice would be to discourage students from
collaborating with peers they know. Try and get
people to work in groups where they might be
exposed to new ideas or new kinds of things.

The other piece of advice I would give
is to be really careful when you start seeing
“bro” culture emerge—when you start seeing
the classroom segregate and the women are
fetching coffee and the guys are doing the code,
or where the women are doing all the “art.”
Remain very cognizant that it can happen.

Luke DuBois
In our creative-coding curriculum [at NYU IDM],
we have four sections that are all different.
I teach one that focuses on music. Allison
Parrish teaches one that focuses on text, Kevin
Siwoff on graphics and 3D, and Katherine
Bennett on physical computing. You choose
one to be your home section, but you can float
between the others as the classes don’t happen
simultaneously. You can get reinforcement by
going to the other sections....In an ideal world,
we would figure out a way to teach all four of
those things in each section, and the instructors
would rotate, but there’s not enough time.

My advice is, don’t just make it a graphics
class....Teach that first to get it the fuck out of
the way and then talk about text, sound, and
hardware. Or the Web. Talk about Rest APIs or
about all those pet peeves you have about the
dot-com fetish of the day. Last year, I had this
kid who had hacked his entire home in LA so his
mom could hit the snooze button and it would

229Interviews

turn on the coffee maker and then when she
picked up the coffee [pot], the shower would
turn on. Really great stuff! Around that time we’d
gotten a beta release of one of those stupid Nest
things and I told him to hack it and figure out
how to get it to do something useful. Originally,
he was like, “I’m going to make a robotic arm for
the equipment room,” but by the end of it he had
made this weird garden of little automatic bleepy
bloopy things that look like bombs. He made this
great little art installation out of hacking this
piece of horrible commerce tech. That was cool.

Allison Parrish
I had the pleasure of taking several classes from
Marina Zurkow at ITP and she was really mean
on the first day of class. She was really strict
and she just projected this persona of being very
exacting. I found that super refreshing in the
context of the rest of ITP, where teachers tend
to be a tiny bit lackadaisical. I’ve tried to adopt
Marina’s approach at least for that first day: be
strict up front and don’t give any ground when it
comes to the idea that you’re the one teaching,
and that the class that you’ve designed or the
class that you’re teaching is a serious thing that
deserves the students’ attention. Otherwise they
might not apply themselves to the same degree.
It’s important they know that you really care and
that you’re not going to accept work or behavior
that doesn’t live up to a particular standard, even
if you become a super softie as the class evolves.
I found that to be successful.

Classroom Techniques

232 Code as Creative Medium

Managing the dynamics of any classroom can take practice. Computational
arts courses present special challenges, requiring educators who can both
oversee an art or design critique and debug a student’s code—sometimes
simultaneously. In this section we present a selection of tips and tricks to
manage a healthy classroom community, organize feedback to and from
students, and open up channels for communication.

Respect and Accommodation
Find out more. Distribute non-anonymous questionnaires on the first day of
class to get information about each student’s background, goals, interests,
skill level, and concerns. This can be a way to learn each student’s
name and pronouns and identify any learning difficulties early on. It can
also provide helpful context when working with students from diverse
disciplines or socioeconomic backgrounds. Follow up by having one-on-one
conversations with students who have concerns about the class.2

Use a specific code of conduct. Many schools now require educators
to include a code of conduct in their syllabus. Typically, this prohibits
harassment and other discriminatory, aggressive, oppressive, or
suppressive behavior. Classrooms that cover technical concepts often have
additional needs. The Hacker School provides key examples of social rules
that address these particular issues: “No feigning surprise” (e.g., “What?!
I can’t believe you don’t know what the terminal is!”), “no “well-actually’s”
(when a minor and often irrelevant correction is made in a conversation, as
in “well, actually…”), and “no backseat driving” (when someone overhears
people working through a problem and interjects without invitation). These
rules are “designed to curtail specific behavior...found to be destructive to a
supportive, productive, and fun learning environment.”3

Consider your language. Try to not say phrases like “this is easy” when
presenting technical concepts. Instead, say, “You can do this.” This helps
to not alienate students who might be struggling to learn introductory
concepts.5

Debugging in the Classroom
We all have bugs. Don’t be afraid to debug your code at the lectern. Ask
your students for their eyes on the problem. Allowing your students to see
you say “I don’t know” can help diminish their own impostor syndrome.

Inclusivity is not just about the diversity
of people but a habitat of learning that is
inclusive and empowering for people.
—Taeyoon Choi1

It is imperative that we engineer robust
participation of people from a broad set of
communities, identity groups, value systems,
and fields of knowledge in this emerging
media landscape, in all roles and levels of
power. This will help to mitigate the pitfalls
of disruption and potentially usher in a
change that has justice and equity as
core values.
—Kamal Sinclair4

233Classroom Techniques

Code isn’t precious. Deliberately break your code in front of students. In
repairing it, narrate your steps out loud.6

Program in pairs. When giving exercises in class, direct your students to
collaborate in pairs on one computer. One student should do the typing
while the other observes, comments, and makes suggestions. Have
students switch roles for each exercise.

Teach how to ask for help. Don’t assume that your students will know how
to ask for help. Lauren McCarthy provides her students with example
questions to ask when they are confused: “Will you repeat that last thing
you said? Could you do another example? Could you go through that again,
slower? Will you explain that a different way? Can you explain that word
you said? Can you please speak a little slower?”8

No typing. When a student asks for help, resist the urge to repair their
code directly; they need the firsthand experience of resolving the issue
themselves. Francis Hunger advises: “Never touch the keyboard, mouse or
trackpad of a student’s computer. Just tell [them] what needs to be done—
they own the keyboard, they own the problem.”9

Adopt a “three before me” policy. Taking time to debug one student’s
problematic code can interrupt the classroom flow for the others. When
a student encounters a bug in their code, require them to seek help from
three of their peers before coming to the educator for assistance. The
“three before me” classroom policy also helps instill an atmosphere of
collaboration and comradery during studio time.

Use paper. Require students to bring a sketchbook to class. This can
be an essential aid for rapid problem-solving, brainstorming, and paper
prototyping.10 It can also help support a laptop-free lecture environment—
as research shows that writing things down improves student recall
and understanding.11

Teaching Critique
Follow a structure for critique. Students often struggle to give each other
meaningful feedback on creative work, lacking a vocabulary or template
for doing so. A variety of educators, educational theorists, and critics have
outlined steps to help students better engage with each other’s work. A
common pattern asks students to start with description (“What do you

The only skill you need is to know (1) how
to identify what you don’t know / when you
don’t know something; and (2) how to look
things up, how to read documentation, how
to try & try & try and keep trying while things
fail, until they work. That’s literally the job of
writing code.
—Jen Simmons7

234 Code as Creative Medium

see?”), followed by analysis (“How is it made? What does it make you think
about or feel?”), interpretation (“What is it about? What is the main idea
being explored?”), and finally, evaluation (“Is it successful? Does it explore
the prompt in a compelling, interesting or unique way?”)12 This last step
will typically require a conversation on what criteria are appropriate for
judging the work.

Use collaborative notepads for critiques. Critiques in studio classrooms
of 12–20 students can be impractical and awkward—both because of the
total time required to discuss every student project, and because of the
social dynamics of groups this size. For a more efficient critique, have
each student briefly present their project at the lectern; meanwhile, during
their presentation, direct the presenter’s classmates to type comments
into an online collaborative real-time text editor (such as a Google Doc
or Etherpad). This has several advantages: peer feedback is instantly
captured and organized; anonymous editing can encourage more honest
contributions; shy students can offer feedback more easily; and the group
is spared the repetition of statements like “I agree with what everyone else
has already said.” For laptop-free classrooms, students can instead provide
feedback to their peers on sticky notes.

Promoting Research
Encourage weekly journaling. Help students become familiar with the field
through regular online research. Golan, for example, requires his students
to browse specific blogs and video-sharing sites and then write weekly
“Looking Outwards” reports: lightweight essays about a specific artwork
or other project they’ve discovered. In a Looking Outwards report, the
student should explain what the project is and how it operates, explain
what inspires them about it, research the project’s chain of influences,
and critique the project by discussing the possibilities it suggests or the
opportunities it missed. Looking Outwards reports can be productively
constrained in a variety of ways, such as by restricting them to projects
that use certain media, or to work by specific artists.

Stage research sprints. Don’t exclusively allocate studio time to technical
content. To reinforce the principle that code always exists in a cultural
context, arrange 15–20 minute “research sprints” in which groups of
students are asked to quickly compile links to projects that exemplify a
particular type of practice. Create an editable slide deck and have each
group contribute one slide.13

235Classroom Techniques

Getting Feedback on Your Teaching
Allow time for questions. Allocate time throughout the term for students
to ask questions on anything they are confused about, safely and without
judgment. Many educators recommend asking students, “What questions
do you have?” rather than, “Do you have any questions?” in order to elicit
more responses.14 Post the questions somewhere visible, and over the
following sessions, address each one in a class discussion.

Request exit tickets. At the end of a class, ask students to submit one or
two questions about the content of the day’s lesson. This can be done via
handwritten notes, an online messaging tool, or a structured electronic
survey. Such “exit tickets” are a way of getting instant feedback on your
teaching and can help you understand your students’ comprehension.15
They can also function as an attendance record.

Students will remember your kindness a lot
longer than they’ ll remember any particular
homework assignment.
—Holly Ordway16

236 Code as Creative Medium

Notes
1. Taeyoon Choi. “Worms, Butterflies, and
Dandelions: Open Source Tools for the
Arts.” Medium.com, June 20, 2018, https://
medium.com/@tchoi8/worms-butterflies-
and-dandelions-open-source-tools-for-the-
arts-9b4dcd76a1f2.

2. Rebecca Fiebrink (@RebeccaFiebrink),
Twitter, August 8, 2019, 7:18 AM,
https://twitter.com/RebeccaFiebrink/
status/1159423540392812546.

3. “User’s Manual,” The Recurse Center, last
modified July 26, 2019, https://www.recurse.
com/manual.

4. Kamal Sinclair, “The High Stakes
of Limited Inclusion,” Making a New
Reality, November 29, 2017, https://
makinganewreality.org; quoted in Cara
Mertes, “Now Is the Time for Social Justice
Philanthropy to Invest in Emerging Media,”
Equals Change Blog, June 22, 2018, https://
www.fordfoundation.org/ideas/equals-
change-blog/posts/now-is-the-time-for-
social-justice-philanthropy-to-invest-in-
emerging-media.

5. Luca Damasco (@Lucapodular),
Twitter, August 8, 2019, 8:14 AM,
https://twitter.com/Lucapodular/
status/1159437696663789569.

6. Douglas E. Stanley (@abstractmachine),
“Break code, then try to find your
way back, asking students for help,”
Twitter, August 8, 2019, 6:10 AM,
https://twitter.com/abstractmachine/
status/1159406642947121152.

7. Jen Simmons (@jensimmons), Twitter,
July 26, 2018, 1:20 PM, https://twitter.com/
jensimmons/status/1022532183733481472.

8. Lauren McCarthy, “Are You All In?”
(lecture, Learning to Teach, Teaching to Learn
II, Postlight, NY, January 2017), video, 1:12:35,
https://www.youtube.com/watch?v=D7-
m6NJ90RE.

9. Francis Hunger (@databaseculture),
Twitter, August 7, 2019, 4:35 PM,
https://twitter.com/databaseculture/
status/1159201338112319491.

10. Rebecca Fiebrink (@RebeccaFiebrink),
Twitter, August 8, 2019, 7:16 AM,
https://twitter.com/RebeccaFiebrink/
status/1159423246745382912.

11. Pam A. Mueller and Daniel M.
Oppenheimer, “The Pen Is Mightier than
the Keyboard: Advantages of Longhand
over Laptop Note Taking,” Psychological
Science 25, no. 6 (April 23, 2014): 1159–1168,
doi:10.1177/0956797614524581.

12. Terry Barrett, CRITS: A Student Manual
(London: Bloomsbury Visual Arts, 2018),
69–154 and Criticizing Art: Understanding the
Contemporary (Mountain View, CA: Mayfield
Publishing Company, 1994).

13. Mitchell Whitelaw (@mtchl), Twitter,
August 7, 2019, 5:23 PM, https://twitter.
com/mtchl/status/1159213387458347009.

14. Cris Tovani, “Let’s Switch Questioning
Around,” Educational Leadership 73, no. 1
(2015): 30–35.

15. Elizabeth F. Barkley, K. Patricia Cross, and
Claire Howell Major, Collaborative Learning
Techniques: A Handbook for College Faculty
(San Francisco: Jossey-Bass, 2014), 35.

16. Holly Ordway (@HollyOrdway),
Twitter, March 13, 2020, 5:47 PM,
https://twitter.com/HollyOrdway/
status/1238582577461702657 and thread
at https://twitter.com/HollyOrdway/
status/1238576343840968710.

Provenance

238 Code as Creative Medium

Like the Brothers Grimm, who compiled fairy tales from
interviews with grandmothers, or Dushko Petrovich and
Roger White, who collected accounts of memorable art
assignments from artists and teachers alike, we have
assembled favorite computational art and design prompts
from friends, colleagues, mentors, and students, documenting
the strategies and pedagogies of a community teaching
creative visual production through code. Petrovich and White
remind us that legendary assignments can stay with you for
life, often resurfacing when one reenters the classroom as
a teacher: “Most artists, when they begin to teach, will pass
along—consciously or not—assignments they themselves
were once given.”1 Assignments are fodder for adaptation and
are continually shared, forked, recontextualized, subverted,
and renewed, a process that often makes their authorship
plural and ambiguous.

Public records documenting art and design pedagogy are
scarce and poorly maintained, especially in contrast to
notable works of art and design, which are discussed in
critical texts and collected by museums. In their extraordinary
compilation of graphic design assignments, Taking a Line
for a Walk: Assignments in Design Education, Nina Paim,
Emilia Bergmark, and Corinne Gisel lament that, in design
education, “the layer of language that runs alongside this
process is often neglected. Words fly out of a teacher’s
or a student’s mouth and quickly disappear into thin air.
Instructions and specifications, corrections and questions,
fuse with practical work. And assignments, if written down
at all, are rarely considered something worth saving.”2 In the
realm of computational media arts and design, it has been
more common for classroom syllabi and curricula to appear
online; these materials, however, are subject to the uniquely
digital vagaries of data preservation: link rot and bit rot. Web
servers for old courses are rarely considered something
worth maintaining; the “walled gardens” of many courseware
systems restrict public access; and computer arts courses
prior to 1994 precede the World Wide Web altogether, eluding
search engines. The Internet is astonishingly fragile, and even
within the few years we have spent writing this book, links to

many noteworthy resources have gone dark, and projects have
been quietly retired from creator portfolios—a process that is
producing an undeniable amnesia throughout the field.

In this section, we lay out the sources from which we
encountered or developed the assignments in this collection.
We cannot and do not claim that the information here is
definitive. To trace the origins, history, and provenance of
these assignments would require extensive oral history
research, and remains a worthy challenge for art and
education historians of the future. In addition to the gaps in
our knowledge due to the absence or loss of documentation,
we also acknowledge that the information below contains
oversights and blind spots owing to our lack of familiarity
with non-English-speaking art and technology educational
communities, and we fully acknowledge that our perspective
is not representative of the rest of the world.

While many of the assignments in this book have been
adapted from the syllabi of our teachers and peers, a few were
primarily inspired by projects that we admire. In discussing
the provenance of the assignments in their book, Paim,
Bergmark, and Gisel call this process of back-formation
“reconstruction,” and we choose similar vocabulary here. In
particular, our assignments Personal Prosthetic, Parametric
Object, and Virtual Public Sculpture were inspired by the
works that illustrate their respective modules, and are not
otherwise discussed below.

In other cases, our assignments rely on technologies like
speech recognition, 3D printing, augmented reality, or
machine learning that have only recently become widely
accessible. As educators and practitioners have only had a
relatively brief time to experiment with these tools, methods
for how to teach the creative use of these technologies within
art and design contexts are still (quickly) emerging. In such
cases, we have taken the liberty to devise the assignment
briefs ourselves. This is the case for assignments including
Voice Machine, Bot, Personal Prosthetic, Parametric Object,
and Virtual Public Sculpture.

239Provenance

Finally, some of the educational approaches documented
here spread from the community of John Maeda’s Aesthetics
+ Computation Group at the MIT Media Laboratory, where
one of the authors of this book (Golan Levin) was a graduate
student alongside Casey Reas and Ben Fry (who co-founded
the Processing initiative). With this context in mind, it is
important to note that some of the assignments presented in
this book have been drawn directly from personal experience
and firsthand accounts from our peers, and some have been
plucked from a buzzing zeitgeist—distilled from the research,
educational materials, and social media posts of a highly
interconnected community of artists, teachers, and students.

Iterative Pattern
The Iterative Pattern exercise extends from the earliest
practices in plotter-based computer art—the first university
courses for which arose in the early-to-mid 1970s. Writing
in 1977, Grace C. Hertlein, a professor of computer science
at California State University at Chico, details a list of
notable “computer art systems” actively used in higher
education at the time: “in Jerusalem, by Vladimir Bonacic;
Reiner Schneeberger (University of Munich); Jean Bevis
(Georgia State University); Grace C. Hertlein (California
State University system); John Skelton (University of
Denver); Katherine Nash and Richard Williams (University of
Minnesota at Minneapolis).”3

An example of work by one of Reiner Schneeberger’s
students, Robert Stoiber, is shown below, a grid of nested
squares.4 In this picture, in which “the middle point of each
square was obtained by chance,” it is clear that students were
directed to explore iterative loops and randomness. In a 1976
article, Schneeberger describes the context in which this
work was produced, a summer course taught in collaboration
with Professor Hans Daucher of the Department of Art: “This
is a report of the first computer graphics course for students
of art at the University of Munich. [...] A further objective
to be realized was for every student to be able to generate
aesthetically appealing computer graphics after only the first
lecture period.” Schneeberger mentions that the art students

experienced greater than normal hardship, as all of the
computer programming work had to be performed “locally at
the Computer Center, some ten kilometers distant from the
instructional site.”5

Iterative patternmaking is now a standard exercise in texts
on creative coding, especially where iteration techniques
are introduced. Examples include Casey Reas and Chandler
McWilliams’s Form+Code in Design, Art, and Architecture
(2010)6 and Hartmut Bohnacker et al.’s Generative Design:
Visualize, Program, and Create with Processing (2012).7

240 Code as Creative Medium

Face Generator
In his book Design as Art (1966), Bruno Munari presents the
results of a challenge he gave himself: how many different
ways could he draw the human face?8 Mark Wilson later
transposed this assignment to the realm of computer
arts education in Drawing with Computers (1985). Wilson
describes a hypothetical face-generation software program
called METAFACE, analogous to Donald Knuth’s METAFONT
(1977), that his reader is encouraged to develop:

The human face could be schematically rendered
with a sparse set of lines and circles similar
to the minimal description of the alphabet. It
would be possible to write a program—let’s call
it METAFACE—that would emulate some of the
extraordinary variations of the face. The parameters
for the various visual descriptions of the face would
be given to the program: the size of the eyes, the
location of the eyes, and so forth. Depending on
the ambitiousness of the programmer, the program
could become exceedingly complex.9

Wilson also illustrated the variety of faces such a program
might produce:

Lorenzo Bravi, an educator at the design department of
IUAV of Venice and later at the ISIA of Urbino, gave an
influential generative face assignment called “Parametric
Mask” in 2010. Computational face designs by Bravi’s
students were used to create Bla Bla Bla, a sound-reactive
application for iPhone and iPad.10 In a 2011 brief, Casey
Reas, acknowledging both Munari and Bravi, invited his
students at UCLA to make microphone-reactive faces.11
Face generator exercises have since become commonplace
in introductory creative technology courses; dozens of
examples can be found at OpenProcessing.org, written by
educators such as Julia Pierre, Steffen Klaue, Rich Pell, Isaac
Muro, and Anna Mª del Corral.

Clock
“The Clock” is an evergreen creative coding assignment, and
was the original inspiration for this book. An August 2019
survey of 847 classrooms on OpenProcessing.org revealed
scores of clock projects—assigned by a bevy of international
educators including Amy Cartwright, Sheng-Fen Nik Chien,
Tomi Dufva, Scott Fitzgerald, June-Hao Hou, Cedric Kiefer,
Michael Kontopoulos, Brian Lucid, Monica Monin, Matti
Niinimäki, Ben Norskov, Paolo Pedercini, Rich Pell, Julia
Pierre, Rusty Robison, Lynn Tomaszewski, Andreas Wanner,
Mitsuya Watanabe, and Michael Zöllner. The particular text
of the clock assignment presented in this volume is most
closely adapted from Golan’s version, “Abstract Clock: A
diurnally-cyclic dynamic display,” which he assigned in his
Fall 2004 Interactive Image course at Carnegie Mellon.12

The graphic representation of time has long figured into
both analog and digital design education. An assignment
to devise a graphic system that displays and contrasts the
rhythms of sixteen different calendars (including Aztec,
Chinese, Gregorian, etc.) was given at the Yale School
of Art in 1982 by Greer Allen, Alvin Eisenman, and Jane
Greenfield.13 The first computational clock assignment
that we know of was assigned by John Maeda in his Fall
1999 Organic Form course at the MIT Media Lab. This
course—whose students included Golan as well as future

241Provenance

computational media educators like Elise Co, Ben Fry, Aisling
Kelliher, Axel Kilian, Casey Reas, and Tom White — examined
“the nature of symbolic descriptions that are creatively
coerced into representations that react to both internal
changes in state and external changes in environment.” In his
clock assignment, shown below, Maeda asked students to
use the DBN programming environment to “create a display
of time that does not necessarily depict the exact progress of
time, but rather the abstract concept of time.”14

Maeda’s assignment extended from his own artistic
exploration of time displays in his 1996 12 O’Clocks
project. Introducing a simplified clock project in his 1999
book, Design by Numbers, Maeda writes that “time is the
most relevant subject to depict by means of a dynamically
changing form.[...] Given the ability to computationally
observe the progress of time, a form that can reflect the
time is easily constructed.”15

The computational clock assignment spread quickly to other
universities in the early 2000s. The Computer-Related Design
graduate course at Royal College of Art, London, was an early
such center for creative coding education.16 Citing Maeda’s
clocks as an inspiration, RCA instructors Rory Hamilton
and Dominic Robson asked graduate students to design a
“timepiece” in an interaction design course in February 2002.
Hamilton and Robson’s conceptually oriented “pressure
project” is agnostic as to medium:

This simple brief is to look at the nature of clocks
and other time measuring devices. How do we use
them? Why do we use them? What is their meaning?
Restyling of clocks are numerous: but we ask you not
to restyle but to rethink. Not to reskin existing clocks
but to come up with a completely new way of looking
at time. Your design should be beautiful, engaging,
and work. Whatever medium you choose we should
all be able to understand and use your system.17

A 2005 article by a group of Georgia Tech faculty highlights
the clock as a key assignment in Computing as an Expressive
Medium, a core graduate level course taught by Michael
Mateas. For Mateas, who asks students to “display the
progress of time in a non-traditional way,” the clock is
not an exercise in utilitarian design, but an “expressive
project” whose “goal is to start students thinking about the
procedural generation of imagery as well as responsiveness
to input, in this case both the system clock, and potentially,
mouse input.”18

In his Fall 2008 Comparative Media Studies workshop at MIT,
Nick Montfort asked students to develop clocks (“a computer
program that visually indicates the current hour, minute, and
second”).19 Casey Reas introduced the clock assignment to
UCLA in Spring 2011. Reas’s version leaves open the question
of whether the students’ clock should be literal or abstract,
and instead places a primary emphasis on an iterative design
process of sketching and ideation. Asking students to “create
a ‘time visualization,’ aka a clock,” Reas requires students to

242 Code as Creative Medium

bring “at least five different ideas, each with six drawings to
show how the clock changes in time.”20

In September 2017, NYU ITP educator Dan Shiffman
canonized the clock assignment for a wide audience in
his popular Coding Train video channel on YouTube. Citing
Maeda’s 12 O’Clocks and Golan Levin’s Fall 2016 course
materials, Shiffman’s “Coding Challenge #74: Clock with
p5.js” video has accumulated (as of May 2020) more than
350,000 views.21

Generative Landscape
As a 2006 survey by George Kelly and Hugh McCabe shows,
the challenge of procedurally generating landscapes and
terrains has been a fixture in game design and computer
graphics literature since the mid-1980s.22 Whereas most
early computer graphics research was concerned with
achieving realism, the introduction of software development
environments into art schools in the early 2000s created
a context in which the problem could be imaginatively
addressed by students steeped in the traditions of conceptual
art, performance, film, and art history. The language of the
Generative Landscape assignment presented here (populated
with “body parts, hairs, seaweed, space junk, [or] zombies”)
is adapted from a prompt given by Golan in his Fall 2005
Interactive Image course.23

Nick Montfort’s Comparative Media Studies workshop in
2008 also featured a “Generated Landscape” assignment.
Navigability is a key requirement of Montfort’s assignment,
which stipulates that a user be able to “move around a large
virtual space, seeing one window of this space at a time.”24
This assignment is included and discussed in Montfort’s 2016
book, Exploratory Programming for the Arts and Humanities,
which provides sample code for readers to “create a virtual,
navigable space.”25 A more tightly constrained “Noisy
Landscapes” assignment also appears in Bohnacker et al.,
Generative Design.26

Virtual Creature
John Maeda asked students to create a virtual creature in
his Fall 1999 course, Fundamentals of Computational Media
Design (MAS.110) at MIT. “Inspired by a diagram of a cell in
The Biology Coloring Book, I asked my class to re-interpret
the canonical drawing of an amoeba in a medium of their
choice.”27 Influenced by this prompt, Golan initiated the
Singlecell.org project in January 2001, inviting creators like
Lia, Marius Watz, Casey Reas, and Martin Wattenberg to
create interactive creatures for an “online bestiary of online
life-forms reared by a diverse group of computational artists
and designers.”28 An even more open-ended virtual creature
assignment was presented by Lukas Vojir’s influential
Processing Monsters project in 2008, which collected
Processing-based code sketches from scores of contributors
around the world:29

243Provenance

I’m trying to get as much people as possible, to
create simple b/w [black and white] monster in
Processing, [...] while the bottom line is to encourage
other people to learn Processing by showing the
source code. So if you feel like you can make one too
and be part of it, the rules are simple: Strictly black
and white + mouse reactive.30

“Creature” assignments in courses taught by Chandler
McWilliams and John Houck at UCLA between 2007 and
2009 made explicit mention of Vojir’s Processing Monsters,
as well as animistic simulation models like Valentino
Braitenberg’s vehicles. The UCLA assignments emphasized
the use of Java classes and object-oriented programming to
develop virtual creatures with parameterized appearances
and behaviors.31 More recently, OpenProcessing.org has come
to host creature assignments by educators including Tifanie
Bouchara, Margaretha Haughwout, Caroline Kassimo-Zahnd,
Cedric Kiefer, Rose Marshack, Matt Richard, Matt Robinett,
and Kevin Siwoff. Some of these assignments invite students
to use flocking behaviors explained by Craig Reynolds in
his influential 1999 “Steering Behaviors For Autonomous
Characters”32 and popularized in Dan Shiffman’s Nature of
Code book and associated videos.33

Custom Pixel
The concept of custom picture elements in computer arts
extends from experiments in the 1960s by Leon Harmon and
Ken Knowlton at Bell Labs; Danny Rozin’s renowned Wooden
Mirror (1999) and other interactive mirror sculptures; and
photomosaic work by Joseph Francis and Rob Silvers, among
others. The ability of Processing and other creative coding
toolkits to provide straightforward access to image pixel data
means that a “custom pixel” assignment can be a productive
way to support instruction in introductory image processing.
Exercises of this sort appear in Casey Reas and Ben Fry’s
Processing: A Programming Handbook for Visual Designers
and Artists (2007);34 in Ira Greenberg’s Processing: Creative
Coding and Computational Art (2007);35 in Dan Shiffman’s
Learning Processing (2008);36 in Andrew Glassner’s

Processing for Visual Artists: How to Create Expressive
Images and Interactive Art (2010);37 in Reas and McWilliams’s
Form+Code (2010);38 and in Bohnacker et al.’s Generative
Design (2012)39.

The assignment as presented here derives from Golan’s Fall
2004 Interactive Image course. He asked students to “create
a ‘custom picture element’ with which to render your image.
At no time should the original image be seen directly.”40

Drawing Machine
Our Drawing Machine assignment extends from a tradition of
experimental interactive paint programs developed by artists
during the late 1980s and 1990s, such as Paul Haeberli’s
DynaDraw, Scott Snibbe’s Motion Sketch and Bubble Harp,
Toshio Iwai’s Music Insects, and John Maeda’s conceptually
oriented drawing tools, Radial Paint, Time Paint, and A-Paint
(or Alive-Paint).41 By 1999, Maeda had formalized this type of
inquiry as an educational assignment. In his book Design by
Numbers, he presents an exercise involving the construction
of an ultra-minimal paint program: a loop that continually
sets a canvas pixel to black, at the location of the cursor. In a
section entitled “Special Brushes,” Maeda writes: “Perhaps
the most entertaining exercise in studying digital paint is
the process of designing your own special paintbrush. There
really is no limit to the kind of brush you can create, ranging
from the most straightforward to the completely nonsensical.
How you approach this creative endeavor is up to you.”42
Maeda offers some potential responses to this assignment,
including a pen whose ink changes color over time; a
calligraphy brush with a diagonal tip; and a vector drawing
tool for polylines. Exemplary student responses to this prompt
were published by JT Nimoy in 2001 (then an undergraduate
intern in Maeda’s group at MIT) as a collection of twenty
interactive “Scribble Variations,”43 and by Zach Lieberman
in his 2002 master’s thesis at Parsons School of Design,
“Gesture Machines.” Lieberman’s interactive thesis projects
were published at the now-defunct Remedi Project online
gallery44 and were revived for a lecture presentation recorded
at the 2015 Eyeo Festival.45

244 Code as Creative Medium

Variants of the drawing tool assignment proliferated in
the early 2000s. In a Fall 2003 course at UCLA, Casey
Reas asked students to develop a “mouse-based drawing
machine.”46 In a Spring 2004 course, he asked students to

Have a concrete idea about the type of images
your machine will construct and be prepared to
explain this idea during the critique. Build your
project to have a large range in the quality of
drawings generated and to have a large range
of formal contrasts. It’s very difficult to program
representational images, so it’s advised to focus
on constructing abstract drawings. Do not use any
random values, but instead rely on other sources of
data [...] as the generators of form and motion.47

Golan’s 2000 master’s thesis, “Painterly Interfaces for
Audiovisual Performance,” developed under John Maeda’s
supervision at MIT, presented a collection of five interactive
software programs for the gestural creation and performance
of dynamic imagery and sound. Based on insights from this
work, Golan assigned a “custom drawing program” in his Fall
2004 course at CMU, Introduction to Interactive Graphics.48
In Spring 2005, he refined this drawing program to one in
which “the user’s drawings come to life” by making “a
drawing program which augments the user’s gesture in an
engaging manner.”49

In a 2005 article, Michael Mateas describes a “drawing tool”
assignment given in his graduate-level course at Georgia
Tech, Computing as an Expressive Medium. Mateas asks
students to

Create your own drawing tool, emphasizing
algorithmic generation / modification /
manipulation. [...] The goal of this project is to
explore the notion of a tool. Tools are not neutral,
but rather bear the marks of the historical process
of their creation, literally encoding the biases,
dreams, and political realities of its creators, offering

affordances for some interactions while making
other interactions difficult or impossible to perform
or even conceive.50

In his Winter 2007 and Spring 2008 Interactivity courses
at UCLA, Chandler McWilliams gave assignments that
explored the nuanced differences between a mouse-based
“drawing machine” and a “drawing tool.”51 Since that time,
a panoply of drawing tool assignments have been published
online at OpenProcessing.org, in online classrooms taught
by Antonio Belluscio, Tifanie Bouchara, Tomi Dufva, Briag
Dupont, Rachel Florman, Erik Harloff, Cedric Kiefer, Steffen
Klaue, Andreas Koller, Brian Lucid, Yasushi Noguchi, Paolo
Pedercini, Julia Pierre, Ben Schulz, Devon Scott-Tunkin, and
Bridget Sitkoff, among others. The assignment has also
featured in books on introductory creative coding, such as
Bohnacker et al.’s Generative Design (2012).52

Modular Alphabet
The design principles of parameterization and modularity
are foundational considerations in traditional typography
education, quite apart from the use of code and digital
techniques. A 1982 pencil-and-paper assignment by
Hans-Rudolf Lutz at Ohio State University, for example,
asked students to render an alphabet with five stages of
transitions between consecutive letters.53 An assignment by
Laura Meseguer, given in 2013 at the Escuela Universitaria
de Diseño e Ingeniería de Barcelona, asked students to
design a modular typeface from a small set of hand-drawn
graphical elements. According to Meseguer, “working
with this modular method will help you to understand the
architecture of letterforms and modularity, coherence, and
harmony inherent to type design.”54

As a creative coding assignment, our Modular Alphabet
project descends most directly from prompts and student
work developed in John Maeda’s 1997 Digital Typography
course at the MIT Media Lab, which focused on the
“algorithmic manipulation of type as word, symbol, and
form.”55 Maeda assigned “Pliant Type” and “Unstable

245Provenance

Type” projects that asked students (working in Java) to
“design a vector-based typeface that transforms well” and to
“design a parameterized typeface with inherently unstable
properties.”56 Peter Cho’s project Type Me, Type Me Not
emerged from Maeda’s prompts, and established the template
for the assignment as reconstructed here.57 Cho’s writeup for
the course gallery page explains that “at some point in the
class I became fixated with the idea of constructing letters
from only circular pie pieces, using the fillArc method of the
Java graphics class. [...] Since each letter is devised from two
filled arcs, it is easy to make transitions between letters in
a smooth way.”58 The text of the assignment in the present
volume is adapted from Golan’s “Intermorphable Alphabet:
A custom graphic alphabet,” which he assigned in his 2004
Interactive Image course.59

Computational “parametric type” assignments, extending
from the logic of Knuth’s METAFONT (1977), focus on the
use of parameters to control continuous properties of a
typeface. An assignment that illustrates this is “Varying the
Font Outline (P 3.2.2)” in Generative Design,60 in which the
reader is prompted to explore how a code variable may govern
a property such as the typeface’s overall slant, or something
more unconventional, like wiggliness.

Data Self-Portrait
During the first decade of the 2000s, Judith Donath and her
graduate students in the MIT Media Lab’s Sociable Media
Group created “data portraits,” formulating principles for
producing and understanding media objects that depict their
subjects’ accumulated data rather than their faces. Donath
argued that “calling these representations ‘portraits’ rather
than ‘visualizations’ shifts the way we think about them.”61
Concurrently, Nick Felton’s diaristic, assignment-like “Annual
Report” information visualizations, which he published from
2005 through 2014 and are now part of MoMA’s permanent
collection, were highly influential in establishing a precedent
for computationally designed, data-driven self-portraiture.

By the early 2010s, the use of personal fitness trackers and
smartphone selfies had become widespread, pushing an
evolution in how data self-portraiture was both implemented
and described. The wording of the assignment in this book is
adapted from an exercise in Golan’s Spring 2014 Interactive
Art & Computational Design course at CMU, which asked
students to “develop a visualization which offers insights
into some data you care about. This project will probably
take the form of a “Quantified Selfie”: a computational self-
portrait developed from any (one or more) of the data-streams
you produce.”62

Augmented Projection
Our assignment is inspired by installation works by artists
including Michael Naimark, Krystof Wodiczo, Christopher
Baker, Andreas Gysin + Sidi Vanetti, HeHe (Helen Evans
and Heiko Hansen), Jillian Mayer, Joreg Djerzinski, and
Pablo Valbuena. Valbuena’s computationally generative
Augmented Sculpture artwork, presented at the 2007 Ars
Electronica Festival and widely viewed online,63 was also
particularly influential to creative technologists, and spurred
the development of commercial projection mapping software
like MadMapper and Millumin. With the help of these tools,
projection mapping has become a staple in progressive
theater scenography, and is taught in many graduate
programs in video and media design.

Golan gave a version of this assignment (“a poetic gesture
projected on a wall”) in fall 2013. Students were asked to
write code in Processing, using the Box2D physics library, in
order to generate real-time animated graphics that related
both visually and conceptually to wall features like power
outlets and doorknobs.64

246 Code as Creative Medium

One-Button Game
The first public competition to create “a strictly one-button
game”—that we know of—was held in April 2005 by Retro
Remakes, an online community of independent game
developers.65 Soon after, in a Gamasutra article that would
be widely cited in subsequent game design syllabi, Berbank
Green discussed in-depth design issues in the low-level
mechanics of one-button games.66

In December of 2009, the experimental game design
collective Kokoromi announced the GAMMA IV competition
for one-button games, whose winners were presented
to a large audience at the March 2010 Game Developers
Conference. Responding to an efflorescence of “high-tech”
game controllers that had just been released to the market,
with interfaces like “gestural controls, multi-touch surfaces,
musical instruments, voice recognition—even brain control,”
Kokoromi proposed “that game developers can still find
beauty in absolute simplicity.”67 In August of 2009, the
wildly popular one-button game Canabalt was released
online.68 For his Winter 2009 Interactivity course at UCLA,
Chandler McWilliams introduced the one-button game as a
classroom exercise:

Develop a simple one-button game, meaning the
interface is a single button. Focus your ideas on
expressing a theme while making an interesting
experience. Do not be overly concerned with how the
game behaves technically, great games can be made
very simply. Instead consider how common video
and board games operate and what features of these
artifacts you can reinterpret in interesting ways.
The game need not involve scores or levels; it can
be a playful experience. Remember that conceptual
and visual development is as important as technical
achievement.69

Paolo Pedercini also mentions one-button games (and
“no-button games”) in a CMU Experimental Game Design
syllabus from Fall 2010.70

One-button games are now a popular and well-established
genre. As of August 2019, the indie game distribution website
Itch.io, for example, reported hosting over 2800 unique one-
button games.

Experimental Chat
Our assignment is influenced by mid-1990s telematic media
artworks, such as Paul Sermon’s Telematic Dreaming (1992),
Scott Snibbe’s Motion Phone (1995), and Rafael Lozano-
Hemmer’s The Trace (1995). This assignment also has roots
in the “Shared Paper” exercise that John Maeda discusses
in Design by Numbers. (1999).71 Maeda describes a publicly
accessible web server that stores 1000 numbers, whose
values could be read and modified by user code. Building on
this ultra-simple platform, Maeda presents a “Collaborative
Drawing” project, in which mouse coordinates are shared
from one person to another,72 and “Primitive Chat,” in which a
single letter is sent at a time.73

Maeda elaborates on this assignment in Creative Code
(2004):

The standard final assignment I used to set my
class [in 1997] was to transmute a stream of data
communication. The communication stream
in question was the server, which used to pass
messages from any connected client to all connected
clients simultaneously in the way that Internet-
based chat systems work. I stopped setting this
assignment because of the technical difficulties of
keeping the server running reliably.74

Browser Extension
A precursor to the Browser Extension assignment was Alex
Galloway’s Carnivore project (2000–2001), in which he invited
15 artists to contribute custom software clients that visualized
network traffic captured by a packet sniffer. Each “Carnivore
Client” provided a different lens on internet communication.
In 2008–2009, Google and Mozilla introduced add-on
ecosystems for their Chrome and Firefox web browsers,

247Provenance

kicking off a wave of shareable experimentation. The creation
of commercial browser extensions as a mode of art practice
arose at that time, boosted by the popular success of Steve
Lambert’s Add Art, a browser plugin that automatically
replaces online advertisements with artworks. Lambert’s
project informs our assignment, and we took additional
inspiration from artworks by Allison Burtch, Julian Oliver,
Lauren McCarthy, and others.

Creative Cryptography
The 2013 Snowden revelations catalyzed artistic engagement
with issues surrounding digital privacy, security, surveillance,
anonymity, and cryptographic technologies.75 Keeping in mind
certain cultural practices and artworks that problematized
these themes, Tega developed this prompt for Social
Software, a 2015 class at Purchase College. It draws on
research and projects by practitioners like Addie Wagenecht,
Julian Oliver, Adam Harvey, David Huerta and many others.

A variety of mathematics educators have also written
about the pedagogic value of cryptography for engaging
students from non-technical backgrounds, including Brian
Winkel, Neal Koblitz, Manmohan Kaur, and Lorelei Koss.76
These authors discuss cryptography in the context of both
mathematics education and general education, and although
they aim to cultivate mathematical competencies, rather than
designerly or artistic skill sets, they each observe that the
study of cryptography brings together the political, social and
technical dimensions of math and computation.

Voice Machine
Speech-based human-computer interaction in real time
became a practical reality for creative experimentation in the
late 2010s, as we were writing this book. In 2017, Google’s
Creative Lab division, seeking to encourage developers to
adopt their Google Home platform and Dialogflow speech-
to-text toolkit, sponsored exploratory investigations into
“what’s possible when you bring open-ended, natural
conversation into games, music, storytelling, and more.”77
Among those supported by this “Voice Experiments” initiative

was programmer and artist Nicole He, who created projects
like Mystery Animal, a game in which the computer pretends
to be an animal and users have to guess what it is by asking
spoken questions. In Fall 2018, He taught a course at NYU
ITP entitled Hello, Computer: Unconventional Uses of Voice
Technology. The course objective was to

give students the technical ability to imagine and
build more creative uses of voice technology.
Students will be encouraged to examine and play
with the ways in which this emerging field is still
broken and strange. We will develop interactions,
performances, artworks or apps exploring the unique
experience of human-computer conversation.78

Our Voice Machine assignment draws inspiration from He’s
syllabus and projects by her students;79 from Google’s Voice
Experiments program; and from pioneering early works of
speech-based interactive media art, such as David Rokeby’s
The Giver of Names (1990).

Measuring Device
Data collection is a starting point for education in a wide
range of fields, whether in engineering, the natural sciences,
social sciences, communication design (e.g., in information
visualization), or contemporary art (in critical cultural
practices). Several of our peers have given assignments that
ask creative coding students to collect data using an API (Jer
Thorp at NYU ITP)80 or that ask them to develop “scrapers”
for computationally harvesting information from the
Internet (Sam Lavigne at NYU ITP and the School for Poetic
Computation).81 The assignment we present here, however,
specifically requires students to develop custom hardware
to collect measurements from some dynamic system in the
physical world.

The premise of data-collection-as-art comes from approaches
used by many artists, including Hans Haacke, Mark Lombardi,
On Kawara, Natalie Jeremijenko, Beatriz da Costa, Brooke
Singer, Catherine D’Ignazio, Eric Paulos, Amy Balkin, and

248 Code as Creative Medium

Kate Rich. It also draws on citizen science projects like
Safecast, the Air Quality Egg, Smart Citizen Platform,
Pachube, and the many instructables and online tutorials for
DIY data collection tools. Our assignment was adapted from
an assignment in Golan’s Electronic Media Studio 2 syllabus,
given to art students at CMU in 2013.82

Extrapolated Body
The Extrapolated Body assignment is inspired by interactive
artworks like Myron Krueger’s Videoplace (~1974–1989) and
the long history of expressive uses of offline motion capture
in Hollywood computer graphics. Casey Reas’s UCLA syllabi
from the mid-2000s are some of the earliest extant records of
assignments for the computational, real-time augmentation
of bodies captured with cameras and computer vision; an
exercise from Winter 2004, for example, asks students to use
“the unencumbered body as the interface to interacting with
a piece of software. Develop and implement an idea for the
interaction between two people via a projection, camera, and
computer. Remember that through processing the camera
data, it is possible to track the body, track colors, determine
the direction of motion, read gestures, etc.”83 A related
assignment from Winter 2006 asks students to “Develop
a concept for a video mirror which utilizes techniques of
computer vision.”84

From Lauren McCarthy’s “Mask” assignment, we have
borrowed the premise of asking students to not only develop
body-responsive software, but simultaneously craft a
performance that uses that software. For her Winter 2019
Interactivity course at UCLA, McCarthy writes:

Write or select a short text (one paragraph or less)
that you will read/perform for the class. Based on
the text, design and build a virtual mask that you
will use to perform the text. Using the provided
code template, make your mask react to audio,
changing as the volume of your voice changes. This
project will be evaluated based on how the face
relates to the text, the variation of the mask (how

much it changes), the design of the mask, and your
performance of it.85

Synesthetic Instrument
The Synesthetic Instrument assignment asks students to
develop a tool for the simultaneous performance of sound and
image. Our formulation extends from Golan’s master’s thesis
work at the MIT Media Lab (1998–2000), which itself took
inspiration from 1990s audiovisual performance instruments
by Toshio Iwai especially. In April 2002, in his Audiovisual
Systems and Machines (“Avsys”) graduate course at the
Parsons School of Design, Golan translated this research
problem into an assignment in “Simultaneous real-time
graphics and sound”:

Your assignment is to develop a system which
responds to some kind of input (for example, the
mouse, the keyboard, some kind of real-time data-
stream, etc.) through the real-time generation of
synthetic sound and graphics. [...] Your system must
not use canned (pre-prepared) audio fragments or
samples. Therefore it will be necessary for you to
code your own digital synthesizer, from scratch.
To create a relationship between the image and
sound, it is presumed that you will also need to
appropriately map the data which describes your
visual simulation, to the inputs of your sound
synthesizer. When creating your system, consider
some of the following possible issues, to which there
are no ‘correct’ answers: are the sound and image
commensurately plastic, or is one more malleable
than the other? Are the sound and image tightly
related, or indirectly linked? What is the quality of
your use of negative space, in the sound as well as
the image? Are rhythms evident in either image or
sound, or both?86

249Provenance

Notes
1. Dushko Petrovich and Roger White, eds.,
Draw It with Your Eyes Closed: The Art of the
Art Assignment (Paper Monument, 2012), 122.

2. Nina Paim, Emilia Bergmark, and Corinne
Gisel, eds., Taking a Line for a Walk:
Assignments in Design Education (Leipzig,
Germany: Spector Books, 2016), 3.

3. Grace C. Hertlein, “Design Techniques and
Art Materials in Computer Art,” Computer
Graphics and Art 2, no. 3 (August 1977):
27, http://dada.compart-bremen.de/
docUploads/COMPUTER_GRAPHICS_AND_
ART_Aug1977.pdf.

4. Reiner Schneeberger, “Computer
Graphics at the University of Munich (West
Germany),” Computer Graphics and Art 1, no.
4 (November 1976): 28, http://dada.compart-
bremen.de/docUploads/COMPUTER_
GRAPHICS_AND_ART_Nov1976.pdf.

5. Schneeberger, “Computer Graphics,” 28.

6. Casey Reas and Chandler McWilliams,
Form+Code in Design, Art, and Architecture
(New York: Princeton Architectural Press,
2010), 64. See the exercise “Code Examples:
Embedded Iteration.”

7. Hartmut Bohnacker, Benedikt Groß, and
Julia Laub, Generative Design: Visualize,
Program, and Create with Processing, ed.
Claudius Lazzeroni (Hudson, NY: Princeton
Architectural Press, 2012), 214–217. See the
exercise “Complex Modules in a Grid.”

8. Bruno Munari, “Variations on the Theme
of the Human Face,” in Design as Art, trans.
Patrick Creagh (London: Pelican Books, 1971),
n.p. Originally published in Italian as Arte
come mestiere (Editori Laterza, 1966).

9. Mark Wilson, Drawing with Computers
(New York: Perigee Books, 1985), 18, http://
mgwilson.com/Drawing%20with%20
Computers.pdf.

10. Filip Visnjic, “Bla Bla Bla,” Creative
Applications Network, April 26, 2011, https://
www.creativeapplications.net/processing/
bla-bla-bla-iphone-of-processing-sound/.

11. Casey Reas, syllabus for Interactivity
(UCLA, Spring 2011 and Fall 2011), http://
classes.design.ucla.edu/Spring11/28/
exercises.html and http://classes.design.
ucla.edu/Fall11/28/projects.html.

12. https://web.archive.org/
web/20060519010135/http://artscool.
cfa.cmu.edu/~levin/courses/dmc/iig_04f/
ejercicio.php.

13. Paim, Bergmark, and Gisel, Taking a Line
for a Walk, 135.

14. John Maeda, syllabus for MAS.961:
Organic Form (MIT Media Lab, Fall
1999), https://web.archive.org/
web/20000901042632/http://acg.media.
mit.edu/courses/organic/, accessed January
18, 2000.

15. John Maeda, Design by Numbers (New
York: Rizzoli, 1999), 208.

16. Gillian Crampton-Smith, “Computer-
Related Design at the Royal College of Art,”
Interactions 4, no. 6 (November 1997): 27–33,
https://doi.org/10.1145/267505.267511.

17. https://joelgethinlewis.com/oldrcasite/
clock.html.

18. Ian Bogost, Michael Mateas, Janet
Murray, and Michael Nitsche, “Asking What
Is Possible: The Georgia Tech Approach
to Game Research and Education,” iDMAa
Journal 2, no. 1 (Spring 2005): 59–68.

19. Nick Montfort, syllabus for CMS.950:
Comparative Media Studies Workshop 1
(MIT, Fall 2008), http://nickm.com/classes/
cms_workshop_i/2008_fall/.

20. http://classes.design.ucla.edu/
Spring11/28/exercises.html.

21. https://www.youtube.com/
watch?v=E4RyStef-gY.

22. George Kelly and Hugh McCabe, “A
Survey of Procedural Techniques for City
Generation,” The ITB Journal 7, no. 2 (January
2006), doi:10.21427/D76M9P. Available at:
https://arrow.dit.ie/itbj/vol7/iss2/5.

23. https://web.archive.org/
web/20060617092315/http://artscool.
cfa.cmu.edu/~levin/courses/dmc/iig_05f/
ejercicio.php.

24. http://nickm.com/classes/cms_
workshop_i/2008_fall/.

25. Nick Montfort, Exploratory Programming
for the Arts and Humanities (Cambridge, MA:
MIT Press, 2016), 260.

26. Bohnacker, Groß, and Laub, Generative
Design, 330.

27. John Maeda, Creative Code: Aesthetics
+ Computation (London: Thames & Hudson,
2004), 53.

28. Golan Levin (editor), http://singlecell.
org/singlecell.html, 2001.

29. https://web.archive.org/
web/20090304170310/http://rmx.cz/
monsters/.

30. Marc De Vinck, “Processing Monsters
by Lukas Vojir,” Make:magazine (blog),
November 11, 2008, https://makezine.
com/2008/11/11/processing-monsters-by-
lu/, accessed August 9, 2019.

31. Chandler McWilliams, syllabus for
Interactivity (UCLA, Winter 2007 and
Spring 2008), http://classes.dma.ucla.edu/
Winter07/28/ and http://classes.dma.ucla.
edu/Spring08/28/; John Houck, syllabus
for Interactivity (UCLA, Spring 2009),
http://classes.dma.ucla.edu/Spring09/28/
exercises/.

32. Craig W. Reynolds, “Steering Behaviors
For Autonomous Characters,” Proceedings of
Game Developers Conference 1999, San Jose,
California (San Francisco, CA: Miller Freeman
Game Group, 1999), 763–782.

33. Daniel Shiffman, The Nature of Code
(2012); The Coding Train (YouTube channel).

34. Casey Reas and Ben Fry, “Image as Data,”
in Processing: A Programming Handbook
(Cambridge, MA: MIT Press, 2007), 364.
Examples include “Convert pixel values into a

circle’s diameter” and “Convert the red values
of pixels to line lengths.”

35. Ira Greenberg, Processing: Creative
Coding and Computational Art (New York:
Friends of Ed Publishing, 2007), 441–451.
See the “Pixilate” and “Pixel Array Mask”
examples.

36. Dan Shiffman, Learning Processing: A
Beginner’s Guide to Programming Images,
Animation, and Interaction (Burlington,
MA: Morgan Kaufmann Publishers, Inc.,
2008), 324–327. See exercises like Example
15-4, “Pointillism” and Example 16-10, “The
Scribbler Mirror.”

37. Andrew Glassner, Processing for Visual
Artists: How to Create Expressive Images and
Interactive Art (Boca Raton, FL: A K Peters/
CRC Press, 2010), 468–470.

38. Reas and McWilliams, Form+Code in
Design, Art, and Architecture (New York:
Princeton Architectural Press, 2010), 90. See
the exercise “Transcoded Landscape.”

39. Bohnacker, Groß, and Laub, Generative
Design, 302–317. See exercises like “Graphic
from pixel values,” “Type from pixel values,”
and “Real-time pixel values.”

40. https://web.archive.org/
web/20060519010135/http://artscool.
cfa.cmu.edu/~levin/courses/dmc/iig_04f/
ejercicio.php.

41. John Maeda, Maeda@Media (New York:
Rizzoli, 2000), 94–99.

42. Maeda, Design by Numbers, 166–169.

43. https://github.com/jtnimoy/scribble-
variations.

44. http://www.theremediproject.com/
projects/issue12/systemisgesture/.

45. Zach Lieberman, “From Point A to Point
B” (lecture, Eyeo Festival, Minneapolis, MN,
June 2015), https://vimeo.com/135073747.

46. Casey Reas, syllabus for Design for
Interactive Media (UCLA, Fall 2003),

250 Code as Creative Medium

http://classes.dma.ucla.edu/Fall03/157A/
exercises.html.

47. Casey Reas, syllabus for Programming
Media (UCLA, Spring 2004) http://classes.
design.ucla.edu/Spring04/160-2/exercises.
html.

48. https://web.archive.org/
web/20060519010135/http://artscool.
cfa.cmu.edu/~levin/courses/dmc/iig_04f/
ejercicio.php.

49. Golan Levin, syllabus for The Interactive
Image (CMU, Spring 2005), https://web.
archive.org/web/20060518224636/http://
artscool.cfa.cmu.edu/~levin/courses/dmc/
iig_05s/ejercicio.php.

50. Ian Bogost et al., “Asking What Is
Possible,” 59–68.

51. http://classes.dma.ucla.edu/
Winter07/28/; http://classes.dma.ucla.edu/
Spring08/28/.

52. Bohnacker, Groß, and Laub, Generative
Design, 236–245. See exercises including
“Drawing with Animated Brushes” and
“Drawing with Dynamic Brushes.”

53. Paim, Bergmark, and Gisel, Taking a Line
for a Walk, 51.

54. Paim, Bergmark, and Gisel, Taking a Line
for a Walk, 41.

55. John Maeda, course description for
MAS.962: Digital Typography (MIT Media
Lab, Fall 1997), https://ocw.mit.edu/courses/
media-arts-and-sciences/mas-962-digital-
typography-fall-1997/.

56. Maeda, Maeda@Media. See also https://
web.archive.org/web/20010124052200/
https://acg.media.mit.edu/courses/
mas962/.

57. Cho’s project appears in print in Maeda,
Maeda@Media, 436.

58. The MAS.962 course gallery page is
no longer available. See also Peter Cho,
“Computational Models for Expressive

Dimensional Typography” (master’s thesis,
MIT, 1999), 34, https://acg.media.mit.edu/
people/pcho/thesis/pchothesis.pdf.

59. https://web.archive.org/
web/20060519010135/http://artscool.
cfa.cmu.edu/~levin/courses/dmc/iig_04f/
ejercicio.php.

60. Bohnacker, Groß, and Laub, Generative
Design, 276–285.

61. Judith Donath et al., “Data Portraits”
(lecture, SIGGRAPH ‘10, Los Angeles, CA,
July 2010), https://smg.media.mit.edu/
papers/Donath/DataPortraits.Siggraph.final.
graphics.pdf.

62. http://golancourses.net/2014/
assignments/project-3/.

63. http://www.pablovalbuena.com/
augmented/.

64. Golan Levin, syllabus for 60-210:
Electronic Media Studio 2 (CMU, Fall 2013),
http://cmuems.com/2013/a/assignments/
assignment-07/.

65. Barrie Ellis, “Physical Barriers in Video
Games,” OneSwitch.org.uk, March 20,
2006, http://www.oneswitch.org.uk/OS-
REPOSITORY/ARTICLES/Physical_Barriers.
doc, accessed September 28, 2010.

66. Berbank Green, “One Button Games,”
Gamasutra.com, June 2, 2005, https://web.
archive.org/web/20050822041906/http://
www.gamasutra.com/features/20050602/
green_01.shtml.

67. http://web.archive.org/
web/20091204142734/http://www.
kokoromi.org/gamma4.

68. http://adamatomic.com/canabalt/.

69. http://classes.dma.ucla.edu/
Winter09/28/exercises/.

70. http://gamedesign.molleindustria.
org/2010/.

71. Maeda, Design by Numbers, 204.

72. Maeda, Design by Numbers, 207.

73. Maeda, Design by Numbers, 213.

74. Maeda, Creative Code, 106.

75. See events like the Prism Breakup
conference and exhibition at New York’s
Eyebeam Center in 2013 (https://www.
eyebeam.org/events/prism-break-up/) as
well as numerous cryptoparties (https://
www.cryptoparty.in/) and Art Hack Days
(http://arthackday.net/) that brought
together artists and technologists.

76. See Brian Winkel, “Lessons Learned
from a Mathematical Cryptology Course,”
Cryptologia 32, no. 1 (January 2008): 45–55;
Neal Koblitz “Cryptography as a Teaching
Tool,” Cryptologia 21, no. 4 (June 1997):
317–326; Manmohan Kaur, “Cryptography as
a Pedagogical Tool,” Primus 18, no. 2 (March
2008): 198–206; Lorelei Koss, “Writing and
Information Literacy in a Cryptology First-
Year Seminar,” Cryptologia 38, no. 3 (June
2014): 223–231.

77. https://experiments.withgoogle.com/
collection/voice.

78. https://nicolehe.github.io/schedule, last
modified October 23, 2018.

79. https://medium.com/@nicolehe/fifteen-
unconventional-uses-of-voice-technology-
fa1b749c14bf.

80. Jer Thorp, syllabus for Data Art (NYU ITP,
Spring 2016), https://github.com/blprnt/
dataart2017a.

81. Sam Lavigne, syllabus for Scrapism
(NYU ITP, Fall 2018), https://github.com/
antiboredom/sfpc-scrapism.

82. Golan Levin, syllabus for Electronic Media
Studio 2 (CMU, Fall 2013), http://cmuems.
com/2013/a/assignments/assignment-08/,
last modified December 2013.

83. Casey Reas, syllabus for Interactive
Environments (UCLA, Winter 2004), http://
classes.design.ucla.edu/Winter04/256/
exercises.html#B.

84. Casey Reas, syllabus for Interactive
Environments (UCLA, Winter 2006), http://
classes.design.ucla.edu/Winter06/256/
exercises.html#A.

85. Lauren McCarthy, syllabus for
Interactivity (UCLA, Winter 2019),
http://classes.dma.ucla.edu/
Winter19/28/#projects.

86. Golan Levin, syllabus for Audiovisual
Systems and Machines (Parsons
School of Design MFADT Program,
Spring 2002, https://web.archive.org/
web/20020802181442/http://a.parsons.
edu/~avsys/homework7/index.html.

Appendices

253

Tega Brain is an Australian-born artist,
environmental engineer, and educator.
Her work examines issues of ecology, data
systems, and infrastructure. Her work
has been shown in the Vienna Biennale
for Change, the Guangzhou Triennial, and
in institutions like the Haus der Kulturen
der Welt and the New Museum, among
others. She is Assistant Professor of
Integrated Digital Media at New York
University (NYU) and works with the
Processing Foundation on the Learning to
Teach conference series and p5.js project.

Tega Brain

Golan Levin is Professor of Electronic Art
at Carnegie Mellon University, where he
also holds courtesy appointments in the
School of Computer Science, the School
of Design, the School of Architecture, and
the Entertainment Technology Center.
As an educator, Golan’s pedagogy is
concerned with reclaiming computation
as a medium of personal expression. He
teaches “studio art courses in computer
science,” on themes like interactive
art, generative form, and information
visualization. Since 2009, Golan has
also served as Director of CMU’s
Frank-Ratchye STUDIO for Creative
Inquiry, a laboratory for atypical and
anti-disciplinary research across the arts,
science, technology, and culture.

Golan Levin

Authors and Contributors

Authors and Contributors

254 Code as Creative Medium

Heather Dewey-Hagborg is a
transdisciplinary artist and educator
who is interested in art as research and
critical practice. She has shown work
internationally at events and venues
including the World Economic Forum,
Shenzhen Urbanism and Architecture
Biennale, the New Museum, and MoMA
PS1. Her work has been widely discussed
in the media, from the New York Times
and the BBC to TED and WIRED. She is
Visiting Assistant Professor of Interactive
Media at NYU Abu Dhabi and is co-
founder of REFRESH, an inclusive
and politically engaged collaborative
platform at the intersection of art, science,
and technology.

Taeyoon Choi is an artist and educator
based in New York City and Seoul. He is
the co-founder of the School for Poetic
Computation and is a faculty researcher
at NYU’s Interactive Telecommunications
Program (ITP). Choi has extensive
experience teaching art and technology
to youth and communities through his
Making Lab and Poetic Science Fair
initiatives. He has held artist residencies
at Eyebeam Art and Technology Center,
Lower Manhattan Cultural Council, the
Frank-Ratchye STUDIO for Creative
Inquiry at CMU, and the Art + Technology
Lab at the Los Angeles County Museum
of Art. His collaboration with Christine
Sun Kim was presented at the Whitney
Museum of American Art.

Taeyoon Choi Heather Dewey-Hagborg

R. Luke DuBois is a composer, artist, and
performer who explores the temporal,
verbal, and visual structures of cultural
and personal ephemera. He holds a
doctorate in music composition from
Columbia University, and has lectured
and taught worldwide on interactive
sound and video performance. An active
visual and musical collaborator, DuBois
is the co-author of Jitter, a software suite
for the real-time manipulation of matrix
data developed by San Francisco-based
software company Cycling’74. DuBois is
the director of the Brooklyn Experimental
Media Center at the NYU Tandon School
of Engineering, and is on the Board of
Directors of the ISSUE Project Room.

De Angela L. Duff is Industry Professor
at NYU Tandon School of Engineering
and an Associate Vice Provost at NYU.
Teaching in higher education since
1999, she is passionate about educating
students at the intersection of design, art,
and technology. She was acknowledged
for this passion by being awarded the
NYU Tandon School’s 2018 Distinguished
Teaching Award. Duff holds an MFA in
Studio Art (Photography) from MiCA,
a BFA in Graphic Design from Georgia
State University, and a BS in Textiles from
Georgia Tech.

De Angela L. DuffR. Luke DuBois

255

Minsun Eo is a professor of graphic
design at the Maryland Institute
College of Art (MICA), where he is a
recipient of the Trustees Award for
Excellence in Teaching; previously,
Eo was adjunct professor at the City
University of New York (CUNY) Queens
College. His New York-based design-
research studio focuses on practices
that create integrated knowledge,
systems, and experiences for the art,
technology, architecture, fashion, and
education sectors. Eo holds an MFA
in Graphic Design from Rhode Island
School of Design and a BFA in Visual
Communication Design from Kookmin
University, Seoul. Eo has worked at 2x4
New York under the guidance of Michael
Rock (2013–15) and is a member of the
Korean Society of Typography (KST).

Zachary Lieberman is an artist,
researcher, educator, and hacker with a
simple goal: he wants you surprised. He
creates performances and installations
that take human gesture as input and
amplify it in different ways—making
drawings come to life, imagining what
the voice would look like, transforming
silhouettes into music. He’s been listed
as one of Fast Company’s Most Creative
People, and his work has been awarded
the Golden Nica from Ars Electronica and
the Interactive Design of the Year award
from Design Museum London. He creates
artwork through writing software and is a
co-creator of openFrameworks, an open-
source C++ toolkit for creative coding.
Lieberman is co-founder of the School for
Poetic Computation, a school examining
the lyrical possibilities of code, and is also
Adjunct Associate Professor of Media
Arts and Sciences at the MIT Media
Laboratory, where he directs the Future
Sketches research group.

Minsun Eo Zachary Lieberman

Rune Madsen is a designer, artist, and
educator who explores code as a design
material. As a co-founder of Design
Systems International, a design studio
that explores systems in graphic design
and digital media, he specializes in non-
trivial interfaces, brand systems, and
custom design tools. He is the author
of Programming Design Systems, a free
online book that teaches a practical
introduction to the new foundations of
graphic design. Rune has previously
worked for the New York Times, O’Reilly
Media, and as an Assistant Arts Professor
at New York University Shanghai.
Rune holds a BA from the University of
Copenhagen and a master’s degree from
NYU ITP.

Lauren Lee McCarthy is an Los Angeles-
based artist examining social relationships
in the midst of surveillance, automation,
and algorithmic living. She is the creator
of p5.js and Co-Director of the Processing
Foundation. Lauren’s work has been
exhibited internationally, at places such
as The Barbican Centre, Ars Electronica,
Fotomuseum Winterthur, Haus der
elektronischen Künste, SIGGRAPH,
Onassis Cultural Center, IDFA DocLab,
and Seoul Museum of Art. She has
received numerous honors including
a Creative Capital Award, a Sundance
Fellowship, an Eyebeam Residency,
and grants from the Knight Foundation,
Mozilla Foundation, Google, and Rhizome.
Lauren is Associate Professor at UCLA
Design | Media Arts.

Rune Madsen Lauren Lee McCarthy

Authors and Contributors

256 Code as Creative Medium

Allison Parrish is a computer programmer,
poet, educator, and game designer
whose teaching and practice address
the unusual phenomena that blossom
when language and computers meet,
with a focus on artificial intelligence
and computational creativity. She is
Assistant Arts Professor at NYU ITP,
where she earned her master’s degree
in 2008. Named “Best Maker of Poetry
Bots” by The Village Voice in 2016, she is
also the author of @Everyword: The Book
(Instar, 2015), which collects the output
of her popular long-term automated
writing project that tweeted every word
in the English language—attracting over
100,000 followers along the way. Her first
full-length book of computer-generated
poetry, Articulations, was published by
Counterpath in 2018.

Phœnix Perry creates embodied games
and installations. Her work brings
people together to explore their impact
on each other and the environment.
As an advocate for women in game
development, she founded the Code
Liberation Foundation. Presently, she
leads an MSc in Creative Computing at
University of the Arts London’s Creative
Coding Institute. Since 1996, she has
exhibited in a range of cultural venues and
game events including Somerset House,
Wellcome Collection, Lincoln Center,
GDC, A Maze, and Indiecade. She owned
Devotion Gallery in Brooklyn, NY from
2009–2014. Devotion generated
dialogue between art, technology, and
scientific research.

Phœnix Perry Allison Parrish

Casey Reas is a professor of Design
Media Arts at the University of California,
Los Angeles, where he is co-founder
of the UCLA Arts Conditional Studio.
Reas’ creative work builds upon concrete
art, conceptual art, experimental
animation, and drawing; his projects
range from generative prints to urban-
scale installations, solo projects in
studio to collaborations with architects
and musicians. With Ben Fry, Reas
is renowned for his development of
Processing, an open-source, flexible
software sketchbook and language
for learning how to code within the
context of the visual arts. Reas is also
co-author of Form+Code in Design, Art,
and Architecture (Princeton Architectural
Press, 2010), a non-technical introduction
to the history and practice of software
in the visual arts, and Processing: A
Programming Handbook for Visual
Designers and Artists (MIT Press,
2007/2014).

Casey Reas

Daniel Shiffman is Associate Arts
Professor at NYU ITP. In his YouTube
channel, The Coding Train, he publishes
tutorials with subjects ranging from
the basics of programming languages
to generative algorithms like physics
simulation, computer vision, and data
visualization. Shiffman is a director of the
Processing Foundation and the author
of Learning Processing: A Beginner’s
Guide to Programming Images, Animation,
and Interaction and The Nature of
Code: Simulating Natural Systems with
Processing, an open-source book
about simulating natural phenomenon
with code.

Daniel Shiffman

257

Kyuha (Q) Shim is a computational
designer and researcher based in
Pittsburgh and Seoul. He is Assistant
Professor in the School of Design at
Carnegie Mellon University, where he
is also the director of Type Lab. Prior to
CMU, he had worked as a researcher
at Jan van Eyck Academie and MIT’s
SENSEable City Laboratory, and had been
awarded residencies and fellowships at
Frans Masereel Centrum and Facebook
Analog Research Lab. His work has been
exhibited internationally, at the Cooper
Hewitt, Smithsonian Design Museum;
Museu Nacional da República; National
Museum of Modern and Contemporary
Art, Korea; and ggg Gallery, Tokyo. He has
also been featured in design festivals such
as AGI Open, Beijing Design Week, and
London Design Festival. Q is the editor of
GRAPHIC #37: Introduction to Computation
(Propaganda, 2016) and is working on a
forthcoming book entitled Computational
Making in Graphic Design.

Kyuha (Q) Shim

Denmark-based, Hong Kong-born
artist-researcher Winnie Soon is
interested in the cultural implications
of technologies, specifically concerning
internet censorship, data politics,
real-time processing/liveness, invisible
infrastructure, and the culture of code
practice. Her current research focuses on
critical technical and feminist practice,
and she is working on two forthcoming
books entitled Aesthetic Programming:
A Handbook of Software Studies (with
Geoff Cox) and Fix My Code (with Cornelia
Sollfrank). She is Assistant Professor at
Aarhus University.

Winnie Soon

Tatsuo Sugimoto works across multiple
fields, including information design,
media art, and media studies. A member
of the faculty in the Graduate School of
Systems Design at Tokyo Metropolitan
University, Sugimoto has participated
in exhibitions such as Picture Book
Museum and the Sapporo International
Art Festival, and has won awards from
the Japan Media Arts Festival and the
Exploratory IT Human Resources Project.
He is co-author of the textbook History
of Media Technology and a co-translator
of the Japanese editions of Processing:
A Programming Handbook for Visual
Designers and Artists and Generative
Design: Visualize, Program, and Create
with Processing.

Tatsuo Sugimoto

Jer Thorp is an artist, writer, and educator
from Vancouver, Canada, currently living
in New York. Coming from a background
in genetics, his digital art practice
explores the many-folded boundaries
between science, data, art, and culture.
He is Adjunct Professor at NYU ITP and is
the co-founder of The Office for Creative
Research. Jer was the New York Times’s
first Data Artist-in-Residence, and in
2017 and 2018 served as the Innovator in
Residence at the Library of Congress. He
is a National Geographic Explorer and a
Rockefeller Foundation Fellow. In 2015,
Canadian Geographic named Jer one of
Canada’s Greatest Explorers.

Jer Thorp

Authors and Contributors

258 Code as Creative Medium

Notes on Computational
Book Design

Kyuha Shim

Computation is a primary medium in my design practice, so when Golan
and Tega invited me to design their book computationally, I was thrilled
by both my role in what would be the first publication of its kind by MIT
Press and the prospect of demonstrating computational book design in
the larger context of graphic design. In my studio, I write programs to
design dynamic visual formations, generate variable end results informed
by data, and discover new creative opportunities in graphic design. I also
teach in the School of Design at Carnegie Mellon University, where I have
developed courses that introduce computation as a creative medium. This
project was as refreshing as it was challenging, because it required new
ways of working—both in my design process and in my collaboration with
the authors.

For the design of the book, the functions handling data were built by Golan
and Tega, and I made the graphic design decisions with the help of Minsun
Eo, who specializes in typography. In addition to designing visual systems,
my main role was writing code in Basil.js that intertwined the data and
form. Basil.js enables designers to go back and forth between designing
and programming, providing “a bridge between generating through code
and adjusting by mouse.”1 Thinking about how CSS provides the stylistic
specifications in website design, I used InDesign files to save and load
the typographic styles (i.e., character and paragraph styles) and then
used Basil.js code to conditionally apply them. This enabled me to work
systematically by adjusting generated outcomes through character and
paragraph styles. In building this workflow, I needed to work with the rawer
computational medium, which enabled me to overcome technical obstacles
and boundaries set by software.

While Golan and Tega worked on their content, sharing it as markdown
files and parsers on GitHub, I was able to simultaneously build the
algorithms generating the book with data pulled from the online repository.
We were all able to see and reflect on the designs rendered with the most
up-to-date content and work side by side in real time, which would be
unthinkable in a typical publication process—usually book designers only
begin work once the authors have handed over the finalized content. What
I realized during this project is that the programming aspect of my practice
is about generating not only a creative end result, but also a bespoke
process. While this book was predominantly designed with code, there
were certain tasks that I completed by hand—such as handling orphans
and widows—since my intent in using computation was to make my design
process more intelligent rather than to solve programming problems.

259Notes on Computational Book Design

When thinking about the larger implications of using computation in this
project, I recall a conversation I had with graphic design educator and
theorist Ellen Lupton. She speculated that making templates will be one of
graphic designers’ primary roles in the future.2 But what if more designers
use code to write their own systems? Instead of a scenario in which
designers’ roles are diminished, the computational medium would extend
and enhance their roles. As computation shifts emphasis from crafting
an individual form to building the method from which forms emerge,
programming is more than ever relevant to design innovation.

Notes
1. Ludwig Zeller, Benedikt Groß, and Ted Davis, “basil.js – Bridging Mouse and Code Based
Design Strategies,” in Proceedings of the Third International Conference, DUXU 2014, ed. Aaron
Marcus (Cham, Switzerland: Springer, 2014): 686–696.

2. Ellen Lupton, “Conversation: Ellen Lupton,” GRAPHIC 37 (2016): 158–167.

260 Code as Creative Medium

It’s humbling to think we began this project
eight years ago, intending to self-publish it as
a short ‘zine or guidebook. As we compiled
assignments, references, and exercises, it grew
into what you hold in your hands. Like most
endeavors, it has been made possible by the
generous efforts of so many people—more than
we can name here. Many of our colleagues
and peers have made direct contributions, and
many more have lit our path with their work in
the field.

We are indebted to Casey Reas for writing the
Foreword. His unparalleled perspective on the
field emerges from his tremendously important
work creating Processing with Ben Fry, as well
as from his teaching and art making. We also
wish to acknowledge Casey, Ben, and Golan’s
mentor John Maeda, whose foundational
work and influential guidance still shape the
field today. Along with John, we are grateful
to Christiane Paul, Ellen Lupton, and Chris
Coleman, whose panoptic understandings of
new media arts and design gives such gravity
to their kind endorsements.

Thank you to our book production team:
our copy editor and savior Shannon Fry,
whose wizardry is woven through so many
of the publications on our shelves, and our
designers Kyuha (Q) Shim and Minsun Eo,
who have pulled off a unique and remarkable
achievement in using computational techniques
to design this book. These are gorgeous pages.
At MIT Press, we are grateful to editors Doug
Sery, Noah Springer, and Gita Manaktala, and
to designers Yasuyo Iguchi and Emily Gutheinz,
and production coordinator Jay McNair, for
their stewardship and accommodation of this
unusual project.

Acknowledgments Thank you to all of our interviewees—Taeyoon
Choi, Heather Dewey-Hagborg, Luke DuBois,
De Angela Duff, Zach Lieberman, Rune Madsen,
Lauren McCarthy, Allison Parrish, Phœnix Perry,
Dan Shiffman, Winnie Soon, Tatsuo Sugimoto,
and Jer Thorp—for generously sharing their
time, perspectives, and energies. Thanks also to
our colleagues who provided material and gave
feedback and advice on our manuscript: Daniel
Cardoso-Llach, Matt Deslauriers, Benedikt Groß,
Jon Ippolito, Sam Lavigne, Joel Gethin Lewis,
Ramsey Nasser, Allison Parrish, Paolo Pedercini,
Caroline Record, Tom White, and our anonymous
reviewers. We sincerely appreciate the many
artists, designers, researchers, and former
students who graciously gave their permissions
for us to share their works in these pages.

So many of the projects featured in this book
were nurtured and made possible by creative
coding communities and the open-source
toolkits they develop. We express deep gratitude
to the Processing Foundation, the Processing
community, and the p5.js community. Lauren
McCarthy, Dorothy Santos, and Johanna Hedva,
your commitment to diversity, access, and
community building has set the standard for us
all. Thanks also to Zach Lieberman, Theo Watson,
Arturo Castro, Kyle McDonald, the members
of the openFrameworks community, and to the
many other open-source contributors who spend
late nights tending to bugs, issues, and the
maintenance of the creative coding toolkits that
make this field possible. Thanks also to our many
teaching role models in these communities: Dan
Shiffman, for his profound public contributions
as a new media arts educator; Taeyoon Choi and
the School for Poetic Computation, for sharing
a practice of institution building in its most
compassionate form; and Chris Coleman of the

261Acknowledgments

University of Denver, whose new Clinic for
Open Source Arts holds great promise for the
continued support of our field.

This book was conceived at the 2013 Eyeo
Festival Code+Education Summit. We wish to
thank the directors of the Eyeo Festival—Jer
Thorp, Dave Schroeder, Wes Grubbs, and Caitlin
Rae Hargarten—for creating the conditions for
this exchange and for gathering, galvanizing,
and supporting our creative community.
Similarly, we thank Filip Visnjic, former curator
of the Resonate Festival and co-curator, with
Greg J. Smith, of the CreativeApplications.net
blog, which has provided such a tremendously
valuable platform to bring the efforts of our
community to a broader public.

This project was funded in part by ArtWorks
grant #1855045–34–19 from the Media Arts
Program of the National Endowment for the
Arts. We thank the NEA and its reviewers, and
especially Media Arts Director Jax Deluca for
her leadership in sharing these precious public
funds. This book was also supported by a grant
from the Frank-Ratchye Fund for Art at the
Frontier, administered by the Frank-Ratchye
STUDIO for Creative Inquiry at Carnegie
Mellon University; we express our deep gratitude
to Edward H. Frank and Sarah Ratchye for
their generosity. Additional support for this book
was provided through graduate assistantships
from the Integrative Digital Media program
at the Tandon School of Engineering, New
York University.

This book was realized through the logistical
and administrative support of many dedicated
staff at CMU’s Frank-Ratchye STUDIO for
Creative Inquiry: Thomas Hughes, Linda Hager,

Carol Hernandez, and Bill Rodgers. We are also
indebted to the staff of the CMU College of
Fine Arts Sponsored Projects Office, Jenn Joy
Wilson and January Johnson, for their assistance
in bureaucratic wayfinding. We thank our
student research assistants both at CMU and
NYU: Sarah Keeling, who tirelessly compiled
thousands of assignments from around the
Web, and Najma Dawood-McCarthy, Chloé
Desaulles, Cassidy Haney, Andrew Lau, Tatyana
Mustakos, Cassie Scheirer, Xinyi (Joyce) Wang,
and T. James Yurek, who helped us with many
critical tasks including preparing and porting
code samples, formatting citations, and securing
image permissions.

We acknowledge that we are following in the
footsteps of our peers, the fellow educators
who have written excellent books on computer
art and design education. These include
John Maeda; Casey Reas and Ben Fry; Daniel
Shiffman; Lauren McCarthy; Andrew Blauvelt
and Koert van Mensvoort; Greg Borenstein;
Andrew Glassner; Nikolaus Gradwohl; Ira
Greenberg; Benedikt Groß, Hartmut Bohnacker,
Julia Laub, and Claudius Lazzeroni; Carl
Lostritto; Rune Madsen; Nick Montfort;
Joshua Noble; Kostas Terzidis; Jan Vantomme;
Mitchell Whitelaw; Mark Wilson; and Chandler
McWilliams. Many of the exercises in this book
were adapted from projects posted to the p5.js
Web Editor and public online classrooms on
the OpenProcessing.org repository, and so we
are especially grateful to Cassie Tarakajian and
Sinan Ascioglu, respectively, for creating and
maintaining these critical community resources.

Thanks also to the many educators, students,
and friends—a wider set of peers—who,
knowingly or otherwise, contributed their

creative energies to our volume, including:
Alba G. Corral, Andreas Koller, Art Simon,
Arthur Violy, Barton Poulson, Bea Alvarez,
Ben Chun, Ben Norskov, Brian Lucid, Caitlin
Morris, Caroline KZ, Cedric Kiefer, Charlotte
Stiles, Chris Sugrue, Chris G. Todd, Christophe
Lemaitre, Christopher Warnow, Claire Hentschker,
Clement Valla, Connie Ye, Felix Worseck, Florian
Jenett, Francisco Zamorano, Gabriel Dunne,
Gene Kogan, Herbert Spencer, Hyeoncheol
Kim, Isaac Muro, Joan Roca Gipuzkoa, Jeremy
Rotsztain, Jim Roberts, Joey K. Lee, John
Simon, Juan Patino, Juseung Stephen Lee,
Kasper Kamperman, Kate Hollenbach, Kenneth
Roraback, Lali Barriere, Lingdong Huang, Luiz
Ernesto Merkle, Manolo Gamboa Naon, Marius
Watz, Marty Altman, Matt Richard, Michael
Kontopoulos, Monica Monin, Nick Fox-Gieg,
Nick Senske, Nidhi Malhotra, Ozge Samanci,
Paul Ruvolo, Pinar Yoldas, Rose Marshack, Ryan
D’Orazi, Seb Lee-Delisle, Sheng-Fen Nik Chien,
Stanislav Roudavski, Steffen Fiedler, Steffen
Klaue, Tami Evnin, Thomas O. Fredericks, and
Winterstein / Riekoff.

Finally, we thank our families, partners, and
close friends, especially Andrea Boykowycz
and Sam Lavigne, who have supported us with
their feedback, encouragement, and unwavering
patience throughout this seemingly never-
ending project.

Bibliographies

264 Code as Creative Medium

Related Resources

This book is a handbook for teaching and
learning computational art and design
and there are many related texts that
complement the topics we cover. This list
includes some that we have found to be
particularly helpful.

 Compendia of Art Assignments

Bayerdörfer, Mirjam, and Rosalie Schweiker,
eds. Teaching for People Who Prefer Not to
Teach. London: AND Publishing, 2018.

Blauvelt, Andrew, and Koert van Mensvoort.
Conditional Design: Workbook. Amsterdam:
Valiz, 2013.

Cardoso Llach, Daniel. Exploring Algorithmic
Tectonics: A Course on Creative Computing
in Architecture and Design. State College,
PA: The Design Ecologies Laboratory at the
Stuckeman Center for Design Computing,
The Pennsylvania State University College of
Arts and Architecture, 2015.

Fulford, Jason, and Gregory Halpern, eds. The
Photographer’s Playbook: 307 Assignments
and Ideas. New York: Aperture, 2014.

Garfinkel, Harold, Daniel Birnbaum, Hans
Ulrich Obrist, and Lee Lozano et al. Do It. St.
Louis, MO: Turtleback, 2005.

Heijnen, Emiel, and Melissa Bremmer,
eds. Wicked Arts Assignments: Practising
Creativity in Contemporary Arts Education.
Amsterdam: Valiz, 2020.

Johnson, Jason S., and Joshua Vermillion,
eds. Digital Design Exercises for Architecture
Students. London: Routledge, 2016.

Ono, Yoko. Grapefruit. London: Simon &
Schuster, 2000.

Paim, Nina, Emilia Bergmark, and Corinne
Gisel. Taking a Line for a Walk: Assignments
in Design Education. Leipzig, Germany:
Spector, 2016.

Petrovich, Dushko, and Roger White. Draw
It with Your Eyes Closed: The Art of the Art
Assignment. Paper Monument, 2012.

Smith, Keri. How to Be an Explorer of the
World: Portable Life Museum. New York:
Penguin Books, 2008.

Computational Art and Design History

Allahyari, Morehshin, and Daniel Rourke.
The 3D Additivist Cookbook. Amsterdam:
The Institute of Network Cultures, 2017.
Accessed July 20, 2020. https://additivism.
org/cookbook.

Armstrong, Helen, ed. Digital Design Theory:
Readings from the Field. New York: Princeton
Architectural Press, 2016.

Cornell, Lauren, and Ed Halter, eds. Mass
Effect: Art and the Internet in the Twenty-
First Century. Vol. 1. Cambridge, MA: MIT
Press, 2015.

Freyer, Conny, Sebastien Noel, and Eva Rucki.
Digital by Design: Crafting Technology for
Products and Environments. London: Thames
& Hudson, 2008.

Hoy, Meredith. From Point to Pixel: A
Genealogy of Digital Aesthetics. Hanover, NH:
Dartmouth College Press, 2017.

Klanten, Robert, Sven Ehmann, and Lukas
Feireiss, eds. A Touch of Code: Interactive
Installations and Experiences. New York: Die
Gestalten Verlag, 2011.

Kwastek, Katja. Aesthetics of Interaction in
Digital Art. Cambridge, MA: MIT Press, 2013.

Montfort, Nick, Patsy Baudoin, John Bell, Ian
Bogost, Jeremy Douglass, Mark C. Marino,
Michael Mateas, Casey Reas, Mark Sample,
and Noah Vawter. 10 PRINT CHR $(205.5+
RND (1));: GOTO 10. Cambridge, MA: MIT
Press, 2012.

Paul, Christiane. A Companion to Digital Art.
Hoboken, NJ: John Wiley & Sons, 2016.

Paul, Christiane. Digital Art (World of Art).
London: Thames & Hudson, 2015.

Plant, Sadie. Zeros and Ones: Digital Women
and the New Technoculture. London: Fourth
Estate, 1998.

265Bibliographies

Reas, Casey, and Chandler McWilliams.
Form+Code in Design, Art, and Architecture.
New York: Princeton Architectural Press,
2011.

Rosner, Daniela K. Critical Fabulations:
Reworking the Methods and Margins of
Design. Cambridge, MA: MIT Press, 2018.

Shanken, Edward A. Art and Electronic Media.
London: Phaidon Press, 2009.

Taylor, Grant D. When the Machine Made Art:
The Troubled History of Computer Art. New
York: Bloomsbury Academic, 2014.

Tribe, Mark, Reena Jana, and Uta Grosenick.
New Media Art. Los Angeles: Taschen, 2006.

Whitelaw, Mitchell. Metacreation: Art
and Artificial Life. Cambridge, MA: MIT
Press, 2004.

Art and Design Pedagogy

Barry, Lynda. Syllabus: Notes from an
Accidental Professor. Montreal: Drawn &
Quarterly, 2014.

Davis, Meredith. Teaching Design: A Guide
to Curriculum and Pedagogy for College
Design Faculty and Teachers Who Use Design
in Their Classrooms. New York: Simon and
Schuster, 2017.

Itten, Johannes. Design and Form: The Basic
Course at the Bauhaus and Later. New York:
Van Nostrand Reinhold Company, 1975.

Jaffe, Nick, Becca Barniskis, and Barbara
Hackett Cox. Teaching Artist Handbook,
Volume One: Tools, Techniques, and Ideas to
Help Any Artist Teach. Chicago: University of
Chicago Press, 2015.

Klee, Paul, and Sibyl Moholy-Nagy.
Pedagogical Sketchbook. London: Faber &
Faber, 1953.

Lostritto, Carl. Computational Drawing:
From Foundational Exercises to Theories of
Representation. San Francisco: ORO Editions
/ Applied Research + Design, 2019.

Lupton, Ellen. The ABC’s of Triangle, Circle,
Square: The Bauhaus and Design Theory. New
York: Princeton Architectural Press, 2019.

Schlemmer, Oskar. Man: Teaching Notes
from the Bauhaus. Cambridge, MA: MIT
Press, 1971.

Tufte, Edward R. The Visual Display of
Quantitative Information. Cheshire, CT:
Graphics Press, 2001.

Wong, Wucius. Principles of Two-Dimensional
Design. New York: John Wiley & Sons, 1972.

Handbooks for Computational
Art and Design

Bohnacker, Hartmut, Benedikt Groß, and
Julia Laub. Generative Design: Visualize,
Program, and Create with JavaScript in p5.js.
Ed. Claudius Lazzeroni. New York: Princeton
Architectural Press, 2018.

De Byl, Penny. Creating Procedural
Artworks with Processing: A Holistic Guide.
CreateSpace Independent, 2017.

Fry, Ben. Visualizing Data: Exploring
and Explaining Data with the Processing
Environment. Sebastopol, CA: O’Reilly Media,
Inc., 2008.

Gonzalez-Vivo, Patricio, and Jennifer Lowe.
The Book of Shaders. Last modified 2015.
https://thebookofshaders.com/.

Greenberg, Ira. Processing: Creative
Coding and Computational Art. New York:
Apress, 2007.

Igoe, Tom. Making Things Talk: Practical
Methods for Connecting Physical Objects.
Cambridge, MA: O’Reilly Media, Inc., 2007.

Madsen, Rune. Programming Design
Systems. Accessed July 20, 2020. https://
programmingdesignsystems.com/.

Maeda, John. Design by Numbers. Cambridge,
MA: MIT Press, 2001.

McCarthy, Lauren, Casey Reas, and Ben Fry.
Getting Started with P5.js: Making Interactive
Graphics in JavaScript and Processing. San
Francisco: Maker Media, Inc., 2015.

Montfort, Nick. Exploratory Programming for
the Arts and Humanities. Cambridge, MA: MIT
Press, 2016.

Murray, Scott. Creative Coding and Data
Visualization with p5.js: Drawing on the Web
with JavaScript. Sebastopol, CA: O’Reilly
Media, Inc., 2017.

Parrish, Allison, Ben Fry, and Casey Reas.
Getting Started with Processing.py: Making
Interactive Graphics with Processing’s Python
Mode. San Francisco: Maker Media, Inc., 2016.

Petzold, Charles. Code: The Hidden Language
of Computer Hardware and Software.
Redmond, WA: Microsoft Press, 2000.

Reas, Casey, and Ben Fry. Processing: A
Programming Handbook for Visual Designers
and Artists. Cambridge, MA: MIT Press, 2014.

Shiffman, Daniel. Learning Processing: A
Beginner’s Guide to Programming Images,
Animation, and Interaction. San Francisco:
Morgan Kaufmann, 2009.

Shiffman, Daniel. The Nature of Code:
Simulating Natural Systems with Processing.
2012.

Wilson, Mark. Drawing with Computers.
New York: Perigee Books, 1985.

Commentary on Computational Culture

Baudrillard, Jean. Simulacra and Simulation.
Ann Arbor: University of Michigan Press, 1994.

Benjamin, Ruha. Race after Technology:
Abolitionist Tools for the New Jim Code. New
York: Wiley, 2019.

Bridle, James. New Dark Age: Technology and
the End of the Future. London: Verso, 2018.

Browne, Simone. Dark Matters: On the
Surveillance of Blackness. Durham, NC: Duke
University Press, 2015.

Cox, Geoff, and Alex McLean. Speaking Code:
Coding as Aesthetic and Political Expression.
Cambridge, MA: MIT Press, 2013.

D’Ignazio, Catherine, and Lauren F. Klein.
Data Feminism. Cambridge, MA: MIT Press,
2020.

Haraway, Donna J. Simians, Cyborgs and
Women: The Reinvention of Nature. New York:
Routledge, 1991: 149–181.

Hayles, N. Katherine. How We Became
Posthuman: Virtual Bodies in Cybernetics,
Literature, and Informatics. Chicago:
University of Chicago Press, 1999.

Kane, Carolyn L. Chromatic Algorithms:
Synthetic Color, Computer Art, and Aesthetics
after Code. Chicago: University of Chicago
Press, 2014.

McNeil, Joanne. Lurking: How a Person
Became a User. New York: Macmillan, 2020.

Odell, Jenny. How to Do Nothing: Resisting
the Attention Economy. London: Melville
House, 2019.

Quaranta, Domenico. In Your Computer. LINK
Editions, 2011.

Steyerl, Hito. Duty Free Art: Art in the Age of
Planetary Civil War. London: Verso, 2017.

266 Code as Creative Medium

Illustration Credits

Unless otherwise noted,
all images are courtesy of the artist(s).

Iterative Pattern

1. Todo. Spamghetto. 2010. Wall coverings
with computer-generated patterns.
https://flickr.com/photos/todotoit/
albums/72157616412434905.

2. Pólya, Georg. “Über die Analogie der
Kristallsymmetrie in der Ebene.” Zeitschrift für
Kristallographie 60 (1924): 278–282.

3. Alexander, Ian. “Ceramic Tile Tessellations
in Marrakech.” 2001. Ceramic tile. https://
en.wikipedia.org/wiki/Tessellation#/media/
File:Ceramic_Tile_Tessellations_in_Marrakech.
jpg.

4. Reas, Casey. One Non-Narcotic Pill A Day.
2013. Print, 27 x 48”. https://paddle8.com/
work/casey-reas/27050-one-non-narcotic-
pill-a-day.

5. Gondek, Alison. Wallpaper. 2015. Generative
wallpaper design. http://cmuems.com/2015c/
deliverables/deliverables-03/project-03-
staff-picks/.

6. Molnár, Vera. Untitled. 1974. Computer
drawing, 51.5 x 36 cm. Courtesy of the Mayor
Gallery, London. https://www.mayorgallery.
com/artists/190-vera-molnar/works/10579.
Courtesy of The Mayor Gallery, London.

7. Buechley, Leah. Curtain (Computational
Design). 2017. Lasercut wool felt. https://
handandmachine.cs.unm.edu/index.
php/2019/12/02/computational-design/.

Face Generator

8. Dörfelt, Matthias. Weird Faces. 2012.
Archival digital print on paper. http://www.
mokafolio.de/works/Weird-Faces.

9. Dewey-Hagborg, Heather. Stranger Visions.
2012. 3D-printed full-color portraits. http://
deweyhagborg.com/projects/stranger-visions.

10. Chernoff, Herman. “The Use of Faces
to Represent Points in K-Dimensional
Space Graphically.” Journal of the American
Statistical Association 68, no. 342 (June 1973):
361–368. http://doi.org/b42z6k.

11. Compton, Kate. Evolving Faces with User
Input. 2009. Interactive software. https://
vimeo.com/111667058.

12. Pelletier, Mike. Parametric Expression.
2013. Video loops. http://mikepelletier.nl/
Parametric-Expression.

13. Sobecka, Karolina. All the Universe Is
Full of the Lives of Perfect Creatures. 2012.
Interactive mirror. http://cargocollective.
com/karolinasobecka/All-The-Universe-is-
Full-of-The-Lives-of-Perfect-Creatures.

14. National Safety Council, Energy BBDO,
MssngPeces, Tucker Walsh, Hyphen-Labs,
RMI, and Rodrigo Aguirre. Prescribed to
Death. 2018. Installation wall with machine-
carved pills. http://www.hyphen-labs.com/
nsc.html. Courtesy of National Safety Council
and U.S. Justice Department.

Clock

15. Byron, Lee. Center Clock. 2007. Abstract
generative clock. http://leebyron.com/
centerclock.

16. Ängeslevä, Jussi, and Ross Cooper. Last
Clock. 2002. Interactive slit-scan clock.
https://lastclock.net.

17. Levin, Golan. Banded Clock. 1999.
Abstract clock. http://www.flong.com/
projects/clock.

18. Puckey, Jonathan, and Studio Moniker.
All the Minutes. 2014. Twitter bot. https://
twitter.com/alltheminutes.

19. Formanek, Mark. Standard Time. 2003.
Video, 24:00:00. http://www.standard-time.
com/index_en.php.

20. Diaz, Oscar. Ink Calendar. 2009. Paper
and ink bottle, 420 x 595 mm. http://www.
oscar-diaz.net/project/inkcalendar.

Generative Landscape

21. Brown, Daniel. Dantilon: The Brutal
Deluxe, from the series Travelling by Numbers.

267Bibliographies

Generative Architecture. 2016. Collection
of digital renderings. http://flic.kr/s/
aHskyNR2Tz.

22. Solie, Kristyn Janae. Lonely Planets. 2013.
Stylized 3D terrain. https://www.instagram.
com/kyttenjanae.

23. Mandelbrot, Benoît B. The Fractal Geometry
of Nature. San Francisco: W. H. Freeman, 1982.
Image courtesy of Richard F. Voss.

24. Pipkin, Everest. Mirror Lake. 2015. Virtual
landscape generator. https://everestpipkin.
itch.io/mirrorlake.

25. Tarbell, Jared. Substrate. 2003.
Virtual landscape generator. http://www.
complexification.net/gallery/machines/
substrate.

Virtual Creature

26. Watanabe, Brent. San Andreas Streaming
Deer Cam. 2015–2016. Live video stream of
modified game software. http://bwatanabe.
com/GTA_V_WanderingDeer.html.

27. Design IO. Connected Worlds. 2015. Large-
scale interactive projection installation. New
York: Great Hall of Science. http://design-io.
com/projects/ConnectedWorlds.

28. Walter, William Grey. Machina
Speculatrix. 1948–1949. Context-responsive
wheeled robots. http://cyberneticzoo.com/
cyberneticanimals/w-grey-walter-and-his-
tortoises.

29. Sims, Karl. Evolved Virtual Creatures.
1994. Animated simulated evolution of block
creatures. https://archive.org/details/sims_
evolved_virtual_creatures_1994.

Custom Pixel

30. Bartholl, Aram. 0,16. 2009. Light
installation, 530 x 280 x 35 cm. https://
arambartholl.com/016.

31. Albers, Anni. South of The Border.
1958. Cotton and wool weaving, 4 1/8 x 15

1/4”. Baltimore Museum of Art. https://
albersfoundation.org/art/anni-albers/
weavings/#slide15. Image courtesy of Albers
Foundation.

32. Harmon, Leon, and Ken Knowlton. Studies
in Perception #1. 1966. Print. https://www.
albrightknox.org/artworks/p20142-computer-
nude-studies-perception-i. Image used with
permission of Nokia Corporation and AT&T
Archives.

33. Odell, Jenny. Garbage Selfie. 2014. Collage.
http://www.jennyodell.com/garbage.html.

34. Gaines, Charles. Numbers and Trees:
Central Park Series II: Tree #8, Amelia. 2016.
Black and white photograph, acrylic on
plexiglass, 95 x 127 x 6”. https://vielmetter.
com/exhibitions/2016-10-charles-gaines-
numbers-and-trees-central-park-series-ii.
Image courtesy of the artist and Hauser &
Wirth.

35. Koblin, Aaron, and Takashi Kawashima.
10,000 Cents. 2008. Crowdsourced digital
artwork. http://www.aaronkoblin.com/
project/10000-cents.

36. Rozin, Daniel. Peg Mirror. 2007. Interactive
sculpture with wood dowels, motors, video
camera, and control electronics. https://www.
smoothware.com/danny/pegmirror.html.
Image courtesy of bitforms gallery, New York.

37. Blake, Scott. Self-Portrait Made with
Lucas Tiles. 2012. Digital collage. http://
freechuckcloseart.com.

Drawing Machine

38. Wagenknecht, Addie. Alone Together.
2017–. Mechanically assisted paintings.
http://www.placesiveneverbeen.com/details/
alonetogether.

39. Chung, Sougwen. Drawing Operations.
2015–. Robot-assisted drawings. https://
sougwen.com/project/drawing-operations.

40. Knowles, Tim. Tree Drawings. 2005.
Tree-assisted drawings. http://www.
cabinetmagazine.org/issues/28/knowles.php.

41. Front Design. Sketch Furniture. 2007.
Hand-sketched 3D-printed furniture. http://
www.frontdesign.se/sketch-furniture-
performance-design-project.

42. Graffiti Research Lab (Evan Roth, James
Powderly, Theo Watson et al.). L.A.S.E.R. Tag.
2007. System for projecting “graffiti.” http://
www.theowatson.com/site_docs/work.
php?id=40.

43. Warren, Jonah. Sloppy Forgeries. 2018.
Painting game. https://playfulsystems.com/
sloppy-forgeries.

44. Maire, Julien. Digit. 2006. Performance,
writing printed text with fingers. https://
www.youtube.com/watch?v=IzDtVR0-0Es.

45. Haeberli, Paul. DynaDraw. 1989.
Computational drawing environment. http://
www.graficaobscura.com/dyna.

Modular Alphabet

46. Pashenkov, Nikita. Alphabot. 2000.
Interactive typographic system. https://
tokyotypedirectorsclub.org/en/award/2001_
interactive.

47. Huang, Mary. Typeface: A Typographic
Photobooth. 2010. Interactive type system
that translates facial dimensions into type
design. https://mary-huang.com/projects/
typeface/typeface.html.

48. Lu, David. Letter 3. 2002. Interactive
typographic system.

49. Cho, Peter. Type Me, Type Me Not. 1997.
Interactive typographic system. https://acg.
media.mit.edu/people/pcho/typemenot/
info.html.

50. Katsumoto, Yuichiro. Mojigen & Sujigen.
2016. Robotic typographic system. http://
www.katsumotoy.com/mojisuji.

51. Munari, Bruno. ABC with Imagination.
1960. Game with plastic letter-composing
elements. Corraini Edizioni. https://www.
corraini.com/en/catalogo/scheda_libro/336/
Abc-con-fantasia. Courtesy of The Museum

of Modern Art, New York. Digital Image ©
The Museum of Modern Art/Licensed by
SCALA / Art Resource, NY.

52. Soennecken, Friedrich. Schriftsystem.
1887. Modular type system. http://luc.
devroye.org/fonts-49000.html.

53. Devroye, Luc. Fregio Mecano. 1920s.
Modular font. http://luc.devroye.org/
fonts-58232.html.

54. Popp, Julius. bit.fall. 2001–2016. Physical
typographic installation. https://www.
youtube.com/watch?v=AICq53U3dl8.
Photograph: Rosa Menkman.

Data Self-Portrait

55. Huang, Shan. Favicon Diary. 2014.
Browser extension. http://golancourses.
net/2014/shan/03/06/project-3-shan-
browser-history-visualization.

56. Lupi, Giorgia, and Stephanie Posavec.
Dear Data. 2016. Analog data drawing
project. http://dear-data.com.

57. Viégas, Fernanda. Themail (2006). Email
visualization software. https://web.archive.
org/web/20111112164734/http://www.
fernandaviegas.com/themail/.

58. Emin, Tracey. Everyone I Have Ever
Slept With 1963–1995. 1995. Appliquéd
tent, mattress, and light, 122 x 245
x 214 cm. https://en.wikipedia.org/
wiki/Everyone_I_Have_Ever_Slept_
With_1963%E2%80%931995. Image
courtesy of Artists Rights Society, NY.

59. Rapoport, Sonya. Biorhythm. 1981.
Interactive computer-mediated participation
performance. http://www.sonyarapoport.
org/portfolio/biorhythm. Image courtesy of
the Estate of Sonya Rapoport.

60. Elahi, Hasan. Stay. 2011. C-print, 30 x 40”.
https://elahi.gmu.edu/elahi_stay.php.

268 Code as Creative Medium

Augmented Projection

61. Wodiczko, Krzysztof. Warsaw Projection.
2005. Public video projection. Zachęta
National Gallery of Art, Warsaw. http://www.
art21.org/artists/krzysztof-wodiczko. ©
Krzysztof Wodiczko. Photograph: Sebastian
Madejski, Zachęta National Gallery of Art.
Image courtesy of Galerie Lelong & Co., New
York.

62. Naimark, Michael. Displacements. 1980.
Rotating projector in exhibition space. Art
Center College of Design, Pasadena, CA.
http://http://www.naimark.net/projects/
displacements.html.

63. McKay, Joe. Sunset Solitaire.
2007. Custom software. http://www.
joemckaystudio.com/sunset.php.

64. HeHe. Nuage Vert. 2008. Laser projection
on vapor cloud. Salmisaari power plant,
Helsinki. https://vimeo.com/17350218.

65. Mayer, Jillian. Scenic Jogging. 2010.
Video. The Solomon R. Guggenheim
Museum, New York City. https://youtu.be/
uMq9Th3NgGk. Image courtesy of David
Castillo Gallery.

66. Obermaier, Klaus, and Ars Electronica
Futurelab. Apparition. 2004. http://www.
exile.at/apparition.

67. Peyton, Miles Hiroo. Keyfleas. 2013.
Interactive augmented projection. Carnegie
Mellon University, Pittsburgh. https://vimeo.
com/151334392.

68. Valbuena, Pablo. Augmented Sculpture.
2007. Virtual projection on physical base.
Medialab Prado, Madrid. http://www.
pablovalbuena.com/augmented. Courtesy of
Ars Electronica.

69. Sugrue, Christine. Delicate Boundaries.
2006. Interactive projection. Medialab
Prado, Madrid. http://csugrue.com/
delicateboundaries. Courtesy of the Science
Gallery Dublin.

70. Sobecka, Karolina. Wildlife. 2006. Public
projection from car. ZeroOne ISEA2006,

San Jose, CA. http://cargocollective.
com/karolinasobecka/filter/interactive-
installation/Wildlife.

One-Button Game

71. Nguyen, Dong. Flappy Bird. 2013. Mobile
game. https://flappybird.io.

72. Rozendaal, Rafaël, and Dirk van
Oosterbosch. Finger Battle. 2011. Mobile
game. https://www.newrafael.com/new-
iphone-app-finger-battle.

73. Hummel, Benedikt, and Marius Winter
(Major Bueno). Moon Waltz. 2016. Video
game. http://www.majorbueno.com/moon-
waltz.

74. Rubock, Jonathan. Nipple Golf. 2016.
Online game. https://jrap.itch.io/obng.

75. Abe, Kaho. Hit Me! 2011. Two-player
physical game. http://kahoabe.net/portfolio/
hit-me. Photograph: Shalin Scupham.

76. Bieg, Kurt, and Ramsey Nasser. Sword
Fight. 2012. Two-player physical game.
https://swordfightgame.tumblr.com.

Bot

77. Thompson, Jeff. Art Assignment Bot.
2013. Twitter bot. https://twitter.com/
artassignbot.

78. Parrish, Allison. Ephemerides. 2015.
Twitter bot. https://twitter.com/the_
ephemerides.

79. Pipkin, Everest, and Loren Schmidt. Moth
Generator. 2015. Twitter bot. http://everest-
pipkin.com/#projects/bots.html.

80. Kazemi, Darius. Reverse OCR. 2014.
Tumblr bot. http://reverseocr.tumblr.com.

81. !Mediengruppe Bitnik. Random Darknet
Shopper. 2014. Bot. https://bitnik.org/r.

82. Lavigne, Sam. CSPAN 5. 2015. YouTube
bot. https://twitter.com/CSPANFive.

Collective Memory

83. McDonald, Kyle. Exhausting a Crowd.
2015. Video with crowdsourced annotations.
https://www.exhaustingacrowd.com.

84. Klajban, Michal. Rock Cairn at Cairn
Sasunnaich, Scotland. 2019. Photograph.
https://commons.wikimedia.org/wiki/
File:Rock_cairn_at_Cairn_Sasunnaich,_
Scotland.jpg.

85. Goldberg, Ken, and Santarromana,
Joseph. Telegarden. 1995. Collaborative
garden with industrial robot arm. Ars
Electronica Museum, Linz, Austria. http://
ieor.berkeley.edu/~goldberg/garden/Ars.

86. Vasudevan, Roopa. Sluts across America.
2012. Digital map with user input. http://
www.slutsacrossamerica.org.

87. Bartholl, Aram. Dead Drops. 2010. http://
deaddrops.com/.

88. Studio Moniker. Do Not Touch. 2013.
Interactive crowdsourced music video.
https://studiomoniker.com/projects/do-not-
touch.

89. Davis, Kevan. Typophile: The Smaller
Picture. 2002. Collaborative pixel art gallery.
https://kevan.org/smaller.cgi.

90. Reddit. /r/place. 2017. Crowdsourced
pixel art. https://reddit.com/r/place.

91. Asega, Salome, and Ayodamola
Okunseinde. Iyapo Repository. 2015. http://
www.salome.zone/iyapo-repository.

Experimental Chat

92. Galloway, Kit, and Sherrie Rabinowitz.
Hole in Space. 1980. Public communication
sculpture. http://y2u.be/SyIJJr6Ldg8.
Courtesy of the 18th St Arts Center.

93. Lozano-Hemmer, Rafael. The Trace.
1995. Telepresence installation. http://www.
lozano-hemmer.com/the_trace.php.

94. Horvitz, David. The Space Between
Us. 2015. App. https://rhizome.org/
editorial/2015/dec/09/space-between-us.

95. Snibbe, Scott. Motion Phone. 1995.
Interactive software for abstract visual
communication. https://www.snibbe.com/
projects/interactive/motionphone.

96. Varner, Maddy. Poop Chat Pro. 2016.
Chatroom. https://cargocollective.com/
maddyv/POOPCHAT-PRO. Photograph:
Thomas Dunlap.

97. Fong-Adwent, Jen, and Soledad Penadés.
Meatspace. 2013. Ephemeral chatroom with
animated GIFs. https://chat.meatspac.es/.

98. Pedercini, Paolo. Online Museum
of Multiplayer Art. 2020. Collection of
chatrooms with interaction constraints.
https://likelike2.glitch.me/?room=firstFloor.

99. Artist, American. Sandy Speaks. 2017.
Chat platform based on video archive.
https://americanartist.us/works/sandy-
speaks.

Browser Extension

100. Hoff, Melanie. Decodelia. 2016. Browser
extension. https://melaniehoff.github.io/
DECODELIA/.

101. Lund, Jonas. We See in Every Direction.
2013. Web browser. Mac OS X 10.7.5 or later.
http://ineverydirection.net/

102. Lambert, Steve. Add Art. 2008. Browser
extension. http://add-art.org/

103. Oliver, Julian, and Daniil (Danja) Vasiliev.
Newstweek. 2011. Custom internet router.
https://julianoliver.com/output/newstweek.

104. McCarthy, Lauren, and Kyle McDonald.
Us+. 2013. Google Hangout video chat app.
http://lauren-mccarthy.com/us.

269Bibliographies

Creative Cryptography

105. Wu, Amy Suo. Thunderclap. 2017.
Steganographic zine. http://amysuowu.net/
content/thunderclap.

106. Sherman, William H. “How to Make
Anything Signify Anything: William
F. Friedman and the Birth of Modern
Cryptanalysis.” Cabinet 40 (Winter 2010–
2011): n.p. http://www.cabinetmagazine.org/
issues/40/sherman.php. Courtesy of New
York Public Library.

107. Varner, Maddy. KARDASHIAN
KRYPT. 2014. Browser extension.
https://cargocollective.com/maddyv/
KARDASHIAN-KRYPT.

108. Dörfelt, Matthias. Block Bills. 2017.
Digital print on paper, 5.9 x 3.3”. https://
www.mokafolio.de/works/BlockBills.

109. Plummer-Fernández, Matthew.
Disarming Corruptor. 2013. Encryption
software. https://www.plummerfernandez.
com/works/disarming-corruptor.

110. Tremmel, Georg, and Shiho Fukuhara.
Biopresence. 2005. Trees transcoded
with human DNA. https://bcl.io/project/
biopresence.

111. Katchadourian, Nina. Talking Popcorn.
2001. Sound sculpture. http://www.
ninakatchadourian.com/languagetranslation/
talkingpopcorn.php. Courtesy of the artist,
Catharine Clark Gallery, and Pace Gallery.

112. Kenyon, Matt, and Douglas Easterly.
Notepad. 2007. Microprinted ink on paper.
http://www.swamp.nu/projects/notepad.

Voice Machine

113. Leeson, Lynn Hershman. DiNA, Artificial
Intelligent Agent Installation. 2002–2004.
Interactive network-based multimedia
installation. Civic Radar, ZKM Museum
of Contemporary Art, Karlsruhe. https://
www.lynnhershman.com/project/artificial-
intelligence. Programming: Lynn Hershman
Leeson and Colin Klingman. Courtesy of

Yerba Buena Center for the Arts. Photograph:
Charlie Villyard.

114. Dinkins, Stephanie. Conversations with
Bina48. 2014–. Ongoing effort to establish
a social relationship with a robot built by
Terasem Movement Foundation. https://www.
stephaniedinkins.com/conversations-with-
bina48.html.

115. Everybody House Games. Hey Robot.
2019. A party game involving smart speakers.
https://everybodyhousegames.com/heyrobot.
html.

116. Rokeby, David. The Giver of Names. 1990–.
Computer system for naming objects. Kiasma
Museum of Contemporary Art, Helsinki.
http://www.davidrokeby.com/gon.html.
Photograph: Tiffany Lam.

117. Lev, Roi. When Things Talk Back. An AR
Experience. 2018. Mobile augmented reality
artificial intelligence app. http://www.roilev.
com/when-things-talk-back-an-ar-experience.

118. Lublin, David. Game of Phones. 2012–.
Social game of telephone transcription. http://
www.davidlubl.in/game-of-phones.

119. Thapen, Neil. Pink Trombone. 2017.
Interactive articulatory speech synthesizer.
https://experiments.withgoogle.com/pink-
trombone.

120. Dobson, Kelly. Blendie. 2003–2004.
Interactive voice-controlled blender. https://
web.media.mit.edu/~monster/blendie.

121. He, Nicole. ENHANCE.COMPUTER. 2018.
Interactive speech-driven browser game.
https://www.enhance.computer.

Measuring Device

122. Jeremijenko, Natalie, and Kate Rich
(Bureau of Inverse Technology). Suicide Box.
1996. Camera, video, and custom software.
http://www.bureauit.org/sbox.

123. Oliver, Julian, Bengt Sjölen, and Danja
Vasiliev (Critical Engineering Working Group).
The Deep Sweep. 2016. Weather balloon,

embedded computer, and RF equipment.
https://criticalengineering.org/projects/
deep-sweep.

124. Varner, Maddy. This or That. 2013.
Interactive poster. https://www.youtube.
com/watch?v=HDWxq1v6A2k.

125. Ma, Michelle. Revolving Games. 2014.
Location-based game and public intervention.
https://vimeo.com/83068752.

126. D’Ignazio, Catherine. Babbling Brook.
2014. Water sensor with voice interface.
http://www.kanarinka.com/project/the-
babbling-brook/.

127. Sobecka, Karolina, and Christopher
Baker. Picture Sky. 2018. Participatory
photography event. http://cargocollective.
com/karolinasobecka/Picture-Sky-Zagreb.

128. Onuoha, Mimi. Library of Missing
Datasets. 2016. Mixed media installation.
http://mimionuoha.com/the-library-of-
missing-datasets. Photograph: Brandon
Schulman Photography.

Personal Prosthetic

129. Clark, Lygia. Dialogue Goggles.
1968. Wearable device. http://www.
laboralcentrodearte.org/en/recursos/obras/
dialogue-goggles-dialogo-oculos-1968.
Image courtesy Associação Cultural O Mundo
de Lygia Clark.

130. Sputniko!. Menstruation Machine –
Takashi’s Take. 2010. Installation with video
and wearable device. Scai the Bathhouse,
Tokyo. https://sputniko.com/Menstruation-
Machine.

131. Dobson, Kelly. ScreamBody. 1998–2004.
Wearable device. MIT Media Lab, Cambridge.
http://web.media.mit.edu/~monster/
screambody. Photograph: Toshihiro Komatsu.

132. Ross, Sarah. Archisuits. 2005–2006.
Wearable soft sculpture. Los Angeles.
https://www.insecurespaces.net/archisuits.
html.

133. Woebken, Chris, and Kenichi Okada.
Animal Superpowers. 2008–2015. Series of
wearable devices. https://chriswoebken.com/
Animal-Superpowers. Photograph: Haeyoon
Yoo.

134. Hendren, Sara, and Caitrin Lynch.
Engineering at Home. 2016. Documentation
and discussion of adapted household
implements. Olin College of Engineering,
Needham, MA. http://engineeringathome.org.

135. Montinar, Steven. 2019. Entry Holes and
Exit Wounds. Performance with wearable
electronics. Carnegie Mellon University,
Pittsburgh. https://www.youtube.com/
watch?v=KBsTpQgyvhk.

136. McDermott, Kathleen. Urban Armor #7:
The Social Escape Dress. 2016. Bio-responsive
electromechanical garment. http://www.
kthartic.com/index.php?/class/urban-
armor-7.

137. Okunseinde, Ayodamola. The Rift: An
Afronaut’s Journey. 2015. Afronaut suit. http://
www.ayo.io/rift.html.

Parametric Object

138. Desbiens Design Research. Fahz.
2015. System for rendering profiles as
3D-printed vases. http://www.fahzface.com/.
Photograph: Nicholas Desbiens.

139. Nervous System. Kinematic Dress. 2014.
System for 3D-printing custom one-piece
dresses. https://n-e-r-v-o-u-s.com/projects/
sets/kinematics-dress. Photograph: Steve
Marsel Studio.

140. Eisenmann, Jonathan A. Interactive
Evolutionary Design with Region-of-Interest
Selection for Spatiotemporal Ideation &
Generation. 2014. Ph.D. defense slides,
Ohio State University. https://slides.com/
jeisenma/defense# and https://etd.ohiolink.
edu/pg_10?0::NO:10:P10_ACCESSION_
NUM:osu1405610355.

141. Epler, Matthew. Grand Old Party. 2013.
Political polling data visualized as silicone butt
plugs. https://mepler.com/Grand-Old-Party.

270 Code as Creative Medium

142. Lia. Filament Sculptures. 2014.
Computational and organically formed
filament sculptures. https://www.liaworks.
com/theprojects/filament-sculptures.

143. Csuri, Charles A. Numeric Milling. 1968.
Computational wood sculpture created with
punch cards, an IBM 7094, and a 3-axis
milling machine. https://csuriproject.osu.edu/
index.php/Detail/objects/769.

144. Ijeoma, Ekene. Wage Islands. 2015.
Interactive installation and data visualization.
New York. https://studioijeoma.com/Wage-
Islands.

145. Segal, Adrien. Wildfire Progression Series,
2017. Data-driven sculpture. https://www.
adriensegal.com/wildfire-progression.

146. Ghassaei, Amanda. 3D Printed Record.
2012. System for rendering audio files as
3D-printed 33RPM records. https://www.
instructables.com/id/3D-Printed-Record.

147. Binx, Rachel, and Sha Huang. Meshu.
2012. System for rendering geodata as
3D-printed accessories. http://www.meshu.
io/about.

148. Chung, Lisa Kori, and Kyle McDonald.
Open Fit Lab. 2013. Performance producing
custom-tailored pants for audience members.
http://openfitlab.com.

149. Allahyari, Morehshin. Material
Speculation: ISIS; King Uthal. 2015–2016.
3D-printed resin and electronic components.
12 x 4 x 3.5” (30.5 x 10.2 x 8.9 cm). http://
www.morehshin.com/material-speculation-
isis/.

Virtual Public Sculpture

150. Matsuda, Keiichi. HYPER-REALITY. 2016.
Augmented reality futuristic cityscape. http://
km.cx/projects/hyper-reality.

151. Shaw, Jeffrey. Golden Calf. 1994.
Augmented reality idol with custom hardware.
https://www.jeffreyshawcompendium.com/
portfolio/golden-calf. Image: Ars Electronica
‘94, Design Center Linz, Linz, Austria, 1994.

152. Bailey, Jeremy. Nail Art Museum. 2014.
Augmented reality miniature museum.
https://www.jeremybailey.net/products/
nail-art-museum.

153. Y&R New York. The Whole Story. 2017.
Augmented reality public statuary. https://
play.google.com/store/apps/details?id=ca.
currentstudios.thewholestory.

154. Skwarek, Mark, and Joseph Hocking. The
Leak In Your Hometown. 2010. Augmented
reality protest app triggered by BP’s logo.
https://theleakinyourhometown.wordpress.
com.

155. Shafer, Nathan, and the Institute
for Speculative Media. The Exit Glacier
Augmented Reality Terminus Project. 2012.
Augmented reality climate data visualization
app. Kenai Fjords National Park. http://
nshafer.com/exitglacier.

156. Raupach, Anna Madeleine. Augmented
Nature. 2019. Augmented reality project
series using natural objects with data
visualization. http://www.annamadeleine.
com/augmented-nature.

Extrapolated Body

157. Jones, Bill T., and Google Creative Lab.
Body, Movement, Language. 2019. Pose
model experiments. https://experiments.
withgoogle.com/billtjonesai. Image courtesy
of Google Creative Lab.

158. Akten, Memo, and Davide Quayola.
Forms. 2012. Digital renderings. https://
vimeo.com/38017188. This project was
commissioned by the National Media
Museum, with the support of imove, part of
the Cultural Olympiad programme. Produced
by Nexus Interactive Arts.

159. Universal Everything. Walking City.
2014. Video sculpture. https://vimeo.
com/85596568.

160. Groupierre, Karleen, Adrien Mazaud,
and Sophie Daste. Miroir. 2011. Interactive
augmented reality installation. http://vimeo.
com/20891308.

161. YesYesNo. Más Que la Cara. 2016.
Interactive installation. https://www.
instagram.com/p/BDxsVZ0JNpm/. Discussed
in Lieberman, Zach. “Más Que la Cara
Overview.” Medium, posted April 3, 2017.
https://medium.com/@zachlieberman/
m%C3%A1s-que-la-cara-overview-
48331a0202c0.

Synesthetic Instrument

162. Pereira, Luisa, Yotam Mann, and Kevin
Siwoff. In C. 2015. Evolving web-based
interactive audiovisual score and performance.
http://www.luisapereira.net/projects/
project/in-c.

163. Pitaru, Amit. Sonic Wire Sculptor. 2003.
Audiovisual composition and performance
instrument. https://www.youtube.com/
watch?v=ji4VHWTk8TQ.

164. Van Gelder, Pia. Psychic Synth. 2014.
Interactive audiovisual installation powered
by brain waves. https://piavangelder.com/
psychicsynth.

165. Brandel, Jono, and Lullatone. Patatap.
2012. Audiovisual composition and
performance instrument. https://works.
jonobr1.com/Patatap.

166. Clayton, Jace. Sufi Plug Ins. 2012. Suite
of music-making apps with poetic interface.
http://www.beyond-digital.org/sufiplugins.

167. Hundred Rabbits (Rekka Bellum and
Devine Lu Linvega). ORCA. 2018–2020.

Exercises

(p. 152) Aliyu, Zainab. p5.js Self-Portrait.
Student project from 15-104: Computation for
Creative Practices, Carnegie Mellon University,
2015. http://cmuems.com/2015c/.

(p. 178) Blankensmith, Isaac. ANTI-
FACE-TOUCHING MACHINE. Interactive
software presented on Twitter, March 2,
2020. https://twitter.com/Blankensmith/
status/1234603129443962880.

(p. 179) MSCHF (Gabriel Whaley et al.).
MSCHF Drop #12: This Foot Does Not Exist.
Software and text message service. 2020.
https://thisfootdoesnotexist.com/.

(p. 179) Pietsch, Christopher. UMAP
Plot of the OpenMoji Emoji Collection.
Presented on Twitter, April 15, 2020.
https://twitter.com/chrispiecom/
status/1250404420644454406/

Provenance

(p. 239) Stoiber, Robert. Student artwork.
In Schneeberger, Reiner. “Computer
Graphics at the University of Munich (West
Germany),” Computer Graphics and Art 1, no.
4 (November 1976): 28, http://dada.compart-
bremen.de/docUploads/COMPUTER_
GRAPHICS_AND_ART_Nov1976.pdf.

(p. 240) Wilson, Mark. “METAFACE”.
Generated face designs. In Drawing with
Computers (New York: Perigee Books, 1985),
18. http://mgwilson.com/Drawing%20
with%20Computers.pdf.

(p. 241) Maeda, John. “Problem 2A — Time
Display”. Assignment from MAS.961: Organic
Form (MIT Media Lab, fall 1999). https://
web.archive.org/ web/20000901042632/
http://acg.media. mit.edu/courses/organic/,
accessed January 18, 2000. Screenshot
courtesy Casey Reas.

(p. 242) Vojir, Lukas. Processing Monsters.
2008. Website with contributed interactive
sketches. https://web.archive.org/
web/20090304170310/http://rmx.cz/
monsters/.

Indexes

273Indexes

!Mediengruppe Bitnik, 80

Abe, Kaho, 74, 76
Adam, Jack, 141
Aesthetics + Computation

Group, MIT Media Lab,
vi, 239

Akay, 53
Akten, Memo, 38, 141
Albaugh, Lea, 121
Albers, Anni, 47
Albers, Josef, 156
Aliyu, Zainab, 152
Allahyari, Morehshin,

129, 130
Allen, Rebecca, 141
Anatsui, El, 44, 47
Andersen, Emily, 71
Anderson, Tim, 107
Anderson, Todd, 96
Andrasek, Alisa, 129
Ängeslevä, Jussi, 32
AntiVJ, 71
Anyasi, Hayden, 139, 141
Archer, Agyei, 59
Arduino, 3, 7, 116, 121, 147
Arnall, Timo, 113
Ars Electronica, 13, 71,

91, 245
Artist, American, 80, 91, 96
Asai, Nobumichi, 141
Asega, Salome, 85
Atari, 76
Auber, Olivier, 85, 91
Awkward Silence Ltd., 136

Baas, Maarten, 32
Badr, Andrew, 85
Bailey, Jeremy, 136, 141
Baker, Chris, 71, 113
Baker, Christopher, 113
Balkin, Amy, 247
Banksy, 132, 136
Bartholl, Aram, 47, 85,

101, 136
Beddard, Tom, 38
Bell Labs, 5, 243
Benjamin, Ruha, 7, 13, 139, 142
Bennett, Katherine, 228
Berdugo, Liat, 101
Berio, Daniel, 38
Bernhardsson, Erik, 59
Berrigan, Caitlin, 211
Betts, Tom, 38

Name Index Cheung, Jian, 113
Cho, Peter, 59, 212, 245, 250
Choi, Taeyoon, 11, 32, 191,

196, 197, 206, 219, 221,
227, 232, 236

ChucK, 144
Chun, Wendy Hui Kyong, 94
Chung, Lisa Kori, 129
Chung, Sougwen, 53
Cinder, 3, 68, 144
Clark, Lygia, 121
Clayton, Jace, 147
Clifton, Brian, 101
Clymer, Andy, 221
Co, Elise, 240
Coding Train, The, 165,

170, 177, 180, 217, 226,
242, 249

Cohen, Joshua, 91
Cohen, Revital, 32
Collishaw, Mat, 129
Compton, Kate, 27, 36, 38,

80, 175
Conway, John, 42, 150, 177
Cooper, Ross, 32
Crespo, Sofia, 42
Critical Engineering

Working Group, 113, 123
Croshere, Skot, 32
Crupi, Jennifer, 121
Csuri, Charles, 124, 129

D’Alessio, Stefano, 141
D’Ignazio, Catherine, 13, 110,

113, 247
da Costa, Beatriz, 65, 247
Dameron, David, 129
Daniels, Bruce, 107
Darke, A. M., 141
Daste, Sophie, 141
Davies, Char, 38
Davis, Kevan, 82, 85
Davis, Douglas, 85
Davis, Joe, 101
Davis, Joshua, 21
Davis, George, 113
Davis, Leslye, 141
de Nijs, Marnix, 141
de Vaucanson, Jacques, 42
Delvoye, Wim, 42
Depoorter, Dries, 91
Des Des Res, 129
Design IO, 42
Design Media Arts, UCLA,

Bhatnagar, Ranjit, 80
Bieg, Kurt, 76
Biegert, Marco, 32
Biľak, Peter, 56
Bilal, Wafaa, 91
Binx, Rachel, 65, 129
Black Socialists of

America, 91
Blake, Scott, 47
Blank, Marc, 107
Blankensmith, Isaac, 107,

178, 180
Blas, Zach, 27, 141
Bodge, Mike, 107
Bohnacker, Hartmut, 239,

242, 243, 249, 250
Bollinger, Dave, 21
Brain, Tega, 13, 32, 80, 91,

113, 247
Braitenberg, Valentino, 42
Brand, Stewart, 5, 13
Brandel, Jono, 147, 161
Bravi, Lorenzo, 27, 240
Bridle, James, 80
Brown, Daniel, 38
Brucker-Cohen, Jonah, 91
Buckenham, George, 80
Buechley, Leah, 2, 13, 21, 186
Bulloch, Angela, 47
Buolamwini, Joy, 27, 142
Bura, Stéphane, 76
Burrington, Ingrid, 101, 129
Burtch, Allison, 96, 247
Byron, Lee, 32

Calver, Peter, 76
Campbell, Jim, 32, 47
Cannon, Bruce, 32
Cantu, Aaron, 101
Cardiff, Janet, 136
Carnegie Mellon University

(CMU), 13, 54, 65, 76,
240, 244–247, 250

Castel, Louis-Bertrand, 147
Castro, Arturo, 27, 260
Cave, Nick, 141
Centre for Genomic

Gastronomy, 113
Chang, Liu, 21
Charity, Mitchell N., 32
Chen, Adrian, 91
Chen, Alex, 147
Cheng, Ian, 38, 42
Cheng, Siew Ming, 121

92, 240, 241, 243, 244,
246, 248, 249

Deswaef, Julien, 129
Devendorf, Laura, 6, 13,

124, 129
Devroye, Luc, 59
Dewey-Hagborg, Heather, 5,

13, 27, 101, 187, 198, 205,
212, 227

Diaz, Oscar, 32
Dinahmoe, 91
Dinkins, Stephanie, 107, 108
Djerzinski, Joreg, 245
Dobson, Kelly, 107, 121
Donath, Judith, 65, 245, 250
Dörfelt, Matthias, 27, 101
Dove, Toni, 71
Driessens, Erwin, 129
Du Bois, W. E. B., 65
Duarte, Daniel, 32
DuBois, R. Luke, 65, 165,

182, 193, 199, 213, 217,
218, 223, 228

Duc, Hang Do Thi, 65
Dudley, Homer, 107
Dudums, Voldemars, 80
Duff, De Angela, 185–229
Dullaart, Constant, 80

Easterly, Douglas, 101
Edmark, John, 129
Edmunds, Peter, 53, 85
Eisenman, Jonathan, 129
Ekman, Paul, 24, 27
Elahi, Hasan, 65
Elsenaar, Arthur, 141
Emin, Tracey, 65
Engelbart, Douglas, 88
Eo, Minsun, 258, 260, 279
Epler, Matthew, 129, 212
Escuela Universitaria de

Diseño e Ingeniería de
Barcelona, 244

Etani, Takehito, 65
Evans, Helen, 245
Everybody House

Games, 107
Evil Mad Scientist

Laboratories, 47
Ewan, Ruth, 32
Exonemo, 91
Eyeo Festival, vi, 13, 38, 54,

80, 243, 250
Eyl, Frédéric, 47

274 Code as Creative Medium

Feingold, Ken, 107
Fels, Sidney, 107
Felsenstein, Lee, 85
Felton, Nick, 65, 245
Fetter, William, 141
Fiebrink, Rebecca, 145, 147,

236
Field.io, 38
Fletcher, Harrell, 85
Flückiger, Michael, 59
Folger Shakespeare Library,

101
Fong-Adwent, Jen, 91
Forman, Eric, 71
Formanek, Mark, 32
Forsythe, William, 53, 141
Fountain, Henry, 101
Francis, Joseph, 243
Franke, Daniel, 141
Free Art and Technology

(F.A.T.) Lab, 53
Freeke, Saskia, 21
Frick, Laurie, 65
Friedman, William and

Elizebeth, 101
Friesen, Wallace, 24, 27
Front Design, 53
Frutiger, Adrian, 56
Fry, Ben, vi, 3, 13, 53, 65,

163, 172, 239, 240,
243, 249

Fuchs, Jochen, 121
Fukuhara, Shiho, 101
Fuller, Matthew, 94
Funk, Andreas, 32

Gabriel, Ulrike, 42
Gadani, Amisha, 121
Gage, Zach, 91
Gaines, Charles, 47
Galloway, Kit, 91
Galloway, Alex, 94, 96, 246
Gamboa Naon, Manolo,

21, 279
Game Developers Conference

(GDC), 246, 249
GAMMA IV, 76, 246
Gannis, Carla, 136
Gannon, Madeline, 129
Gardner, Howard, 13
Gardner, Lauren, 196
Gaskins, Nettrice, 8, 13
Gaulon, Benjamin, 71
Gees, Johannes, 53

Geilfus, Simon, 38
Gelitin, 129
Georgia Tech, 244, 249
Germanidis, Anastasis, 107
Gesture Recognition Toolkit,

145
Ghassaei, Amanda, 129
Giffen, Daniel Craig, 32
Gillian, Nick, 145
Gingold, Chaim, 38, 42
Ginsberg, Alexandra

Daisy, 42
Glassner, Andrew, 249
Glenney, Brian, 136
Glow, Beatrice, 38
Goatly, Wesley, 107
Gobeille, Emily, 42
Goldberg, Ken, 85, 91
Gommel, Mattias, 121
Gondek, Alison, 21
Gondry, Michel, 38
Google, 5, 96, 107, 180, 222,

223, 246
Google Creative Lab, 141,

147, 247
Graffiti Research Lab, 53
Gramazio, Holly, 53
Green, Gunnar, 47
Greenberg, Ira, 249
Gremmler, Tobias, 141
Groß, Benedikt, 249, 250
Groupierre, Karleen, 141
Guidetti, Michael, 71
Gysin, Andreas, 71, 245

Ha, David, 53, 107, 247
Haacke, Hans, 113, 247
Haeberli, Paul, 53, 243
Haidary, Nadeem, 129
Hallock-Greenewalt, Mary

Elizabeth, 147
Hamilton, Rory, 241
Hansen, Heiko, 71, 245
Hansen, Mark, 107
Hapooje, Terike, 113
Harbisson, Neil, 121
Harel, Idit, 7, 13
Harmon, Leon, 47, 243
Hart, Vi, 38
Hartley, Paddy, 141
Hartman, Kate, 121
Harvey, Adam, 27, 139,

141, 247
Hawkins, Max, 91, 141

He, Nicole, 107, 108, 247
Heap, Imogen, 147
Heaton, Kelly, 47
Hello Games, 38
Hendren, Sara, 13, 116, 121,

122, 136
Henry, Desmond Paul, 53
Hertlein, Grace C., 239, 249
Hill, Kashmir, 96
Hillis, Danny, 32
Hinterding, Joyce, 113
Hiromura, Masaaki, 32
Hocking, Joseph, 132, 136
Hodgin, Robert, 38
Hoff, Anders, 38
Hoff, Melanie, 96
holloway, shawné

michaelain, 80
hooks, bell, 9, 13
Horn, Rebecca, 121
Horvitz, David, 91
Houck, John, 243, 249
House, Brian, 65, 96
Howe, Daniel C., 96, 175
Hsieh, Tehching, 32
Huang, Mary, 59, 139
Huang, Sha, 65, 129
Huang, Shan, 65
Huang, Lingdong, 141
Huerta, David, 247
Humans since 1982, 32
Hundred Rabbits, 147
Hyphen-Labs, 27

Ihnatowicz, Edward, 42
Ijeoma, Ekene, 129
Illiger, Andreas, 76
Integrated Digital Media

(IDM), NYU, 165, 228
Interactive Telecommunica-

tions Program (ITP), NYU,
180, 187, 218, 226, 229,
242, 247, 250

Itten, Johannes, vii
Iwai, Toshio, 147, 243, 248

Jeremijenko, Natalie, 32, 110,
113, 247

Johnson, Ian, 53
Jones, Bill T., 141
Jongejan, Jonas, 53
Jordà, Sergi, 147
Jordan, Chris, 44, 47
July, Miranda, 85, 91

Laub, Julia, 249, 250
Lavigne, Sam, 80, 91, 101,

172, 247, 250
Lebling, Dave, 107
Leeson, Lynn Hershman, 107
Lehni, Jürg, 53, 59, 107
Lehni, Urs, 59
Lemercier, Joanie, 38
Lev, Roi, 107
Levin, Golan, 13, 27, 32, 33,

42, 53, 54, 107, 129, 130,
147, 148, 165, 239, 242,
249, 250

Lewandowski, David, 141
Lewis, John, 91
LeWitt, Sol, 150, 151
Lia, 21, 101, 129, 242
Lieberman, Zachary (Zach),

4, 27, 53, 54, 107, 136,
141, 147, 188, 193, 196,
197, 203, 212, 222, 225,
243, 250

Liftig, Anya, 211
Lily & Honglei, 136
Lipkin, Efrem, 85
Lippmann, Holger, 21
Liu, Fei, 42
Lobser, David, 136
Lombardi, Mark, 247
Lotan, Ben, 101
Louis-Rosenberg, Jesse, 129
Lowe, Jen, 65
Lozano-Hemmer, Rafael, 32,

47, 91, 107, 113, 141, 246
Lu, David, 59, 107
Lublin, David, 107
Lund, Jonas, 96
Lupi, Giorgia, 65, 210
Lupton, Ellen, 59, 259, 265
Lüsebrink, Dirk, 141
Lutz, Hans-Rudolf, 244
Lynch, Caitrin, 121

Ma, Michelle, 113
Macawnivore, 27
Maciunas, George, 32
Madsen, Rune, 59, 156,

163, 167, 189, 191, 206,
212, 226

Maeda, John, vi, 6, 13, 32,
53, 59, 151, 209, 212, 239,
240, 242, 243, 244, 246,
249, 250

Mainstone, Di, 121

Kac, Eduardo, 101
Kalish, Jack, 139, 141
Kang, E Roon, 32
Kanno, So, 53
Kastner, Frederic, 147
Katchadourian, Nina, 101
Katsumoto, Yuichiro, 59
Kaur, Manmohan, 101,

247, 250
Kawara, On, 247
Kawashima, Takashi, 47
Kazemi, Darius, 80, 91,

96, 175
Kedia, Harsh, 53
Kenyon, Matt, 101
Khan, Osman, 113
Kiefer, Cedric, 141, 240,

243, 244
Kite, Suzanne, 107
Klein, Lauren, 13, 110, 113
Klingemann, Mario, 27
Kneupfel, Mike, 129
Knoth, Christoph, 59
Knowles, Tim, 53
Knowlton, Ken, 47, 243
Knuth, Donald, 56, 59,

240, 245
Knutsen, Jørn, 113
Koblin, Aaron, 47
Koblitz, Neal, 101, 247, 250
Koch, Rafael, 59
Koelman, Zelf, 32
Kokoromi, 76, 246
Konami, 76
Konzen, Neil, 76
Koons, Jeff, 136
Koss, Lorelei, 247, 250
Kronick, Sam, 101
Krueger, Myron, 88, 91, 248
Kunz, Nicolas, 59
Kuo, Molmol, 136
Kurant, Agnieszka, 85
Kurenniemi, Erkki, 147
Kusama, Yayoi, 82, 85
Kuwahara, Hiroto, 141
Kuznetsov, Stacey, 113
Kwon, Soonho, 53

Lacroix, Paul, 141
Lafuente, Keith, 141
Lambert, Steve, 96, 246
LaPlace, Jules, 27
Latham, William, 42
Latter, Louise, 53

Maire, Julien, 53
Maizland, Lindsay, 101
Major Bueno, 76
Makey Makey, 74
Manabe, Daito, 121, 142
Mandelbrot, Benoît, 38
Mann, Yotam, 147
Marclay, Christian, 32
Martinussen, Einar

Sneve, 113
Mateas, Michael, 38,

244, 249
Matsuda, Keiichi, 136
Mattu, Surya, 80, 96
Maurer, Luna, 150, 151
Max/MSP/Jitter, 3, 144,

182, 213
Mayer, Jillian, 27, 71, 91, 245
Mazaud, Adrien, 141
McCabe, Jonathan, 21
McCarthy, Lauren, 11, 91, 92,

96, 107, 121, 141, 187, 192,
197, 203, 211, 218, 222, 225,
233, 236, 247, 248, 250

McCormack, Jon, 38, 42
McCurdy, Katie, 65
McDermott, Kathleen, 121
McDonald, Kyle, 27, 53, 80,

91, 129, 141, 142, 204
McKay, Joe, 38, 71
McLuhan, Marshall, 5, 13,

44, 116
McNeil, Joanne, 92, 96
McWilliams, Chandler, 239,

243, 244, 246, 249
Menegon, Martina, 141
Meseguer, Laura, 244
Mets, Matt, 53
Meyer-Brandis, Agnes, 113
Miebach, Nathalie, 124, 129
Mignonneau, Laurent, 42
Miharbi, Ali, 32
Miller, George Bures, 136
Mir, Regina Flores, 65
MIT AgeLab, 121
MIT Media Lab, vi, 5, 13,

239, 245
ml5.js, 138, 180
Moeller, Christian, 139, 141
Moholy-Nagy, László, 91
Mojoptix, 32
Moll, Joana, 92, 96, 113
Molnár, Vera, 21, 38, 159
Mondrian, Piet, 152

275Indexes

92, 151, 163, 203, 239,
240, 241, 242, 243, 244,
248, 249, 250

Remedi Project, 243
Resnick, Mitchel, 7, 13, 54
Reyes-Araos, Gonzalo, 47
Reynolds, Craig, 243, 249
Ribas, Moon, 113, 121
Rich, Elliat, 47
Rich, Kate, 113, 247
Robson, Dominic, 241
Rohrer, Jason, 91
Rokeby, David, 107, 147, 247
Röpke, Konrad, 121
Rosenbaum, Eric, 54
Rosenkrantz, Jessica, 129
Ross, Sarah, 121
Roth, Evan, 85, 222
Rothberg, Sara, 96
Rothenberg, Stephanie, 129
Royal College of Art,

241, 249
Rozendaal, Rafaël, 76, 96
Rozin, Daniel, 47
Rubin, Ben, 107
Rubock, Jonathan, 76
Rule, Alix, 91

Sabin, Jenny, 129
Sala, Anri, 113
Salavon, Jason, 129
Saltsman, Adam, 74, 76
Santarromana, Joseph,

85, 91
Saqoosha, 32
Sareen, Harpreet, 107
Sarin, Helena, 21
Sauter, Joachim, 141
Schachman, Toby, 53
Schlemmer, Oskar, 141
Schmidt, Loren, 80
Schmitz, Michael, 59
Schneeberger, Reiner, 239
School for Poetic

Computation (SFPC), 191,
196, 203, 221, 247

Schulte, Jamie, 65
Scott, James C., 110, 113
Segal, Adrien, 129
Selley, Gordon, 42
Sermon, Paul, 91, 246
Shafer, Nathan, 136
Shaw, Jeffrey, 136
Shi, Tara, 101

Parsons School of Design,
243, 248

Pashenkov, Nikita, 59
Pask, Gordon, 147
Paterson, James, 53
Paterson, Katie, 32
Patten, James, 147
Paulos, Eric, 113, 247
Pedercini, Paolo, 7, 13, 38,

76, 91, 183, 240, 244, 246
Pelletier, Mike, 27
Penner, Robert, 165
Perec, Georges, 85
Pereira, Luisa, 147
Perini, Julie, 5, 13
Perlin, Ken, 27
Perry, Phœnix, 188, 192, 211,

221, 228
Peyton, Miles Hiroo, 71
Phiffer, Dan, 96
Picasso, Pablo, 53
Pietsch, Christopher, 179
Pipkin, Everest, 38, 47,

80, 101
Pita, Damjan, 136
Pitaru, Amit, 53, 147
Planetside Software, 38
Plummer-Fernández,

Matthew, 101, 129
Pólya, Georg, 21
Popp, Julius, 59
Posavec, Stephanie, 65
Prakash, Akshat, 53
Processing, vi, 3, 13, 21, 42,

65, 68, 96, 144, 163, 170,
172, 180, 206, 222, 225,
239, 242, 243, 244

Procrustes, 163
Prophet, Jane, 42
Purchase College,

State University of
New York, 247

Pure Data, 144, 182
Pyke, Matt, 42

Quayola, Davide, 38, 141

Rabinowitz, Sherrie, 88, 91
Radical Software Group, 96
Random International, 32
Rapoport, Sonya, 65
Raupach, Anna

Madeleine, 136
Reas, Casey, 3, 13, 21, 38,

Shiffman, Daniel (Dan), 11,
42, 163, 165, 170, 172, 175,
180, 187, 198, 203, 209,
217, 226, 249

Shim, Kyuha, 59, 258,
260, 279

Shoup, Dick, 54, 258
Silver, Jay, 54
Silvers, Rob, 47, 243
Simon, Joel, 96
Sims, Karl, 42
Sinclair, Kamal, 8, 13,

232, 236
Singer, Brooke, 65, 247
Sinha, Shreeya, 141
Siwoff, Kevin, 147, 243
Sjölen, Bengt, 113
Skwarek, Mark, 132, 136
SMG Studio, 76
Smigla-Bobinski, Karina, 53
Smith, Alvy Ray, 54
Smithson, Robert, 132
Snibbe, Scott S., 5, 13, 53,

54, 91, 142, 246
Snowden, Edward, 98, 247
Soares, Susana, 42
Sobecka, Karolina, 27, 71,

113, 141
Sociable Media Group, MIT

Media Lab, 245
Soennecken, Friedrich, 59
Sokpop Collective, 91
Solie, Kristyn Janae, 38
Solt, Mary Ellen, 21
Sommerer, Christa, 42
Soon, Winnie, 189, 192, 199,

204, 213, 217, 221, 228
Spelman, Elliott, 141
Spiegel, Laurie, 54, 147
Sputniko!, 121
Steinkamp, Jennifer, 21
Stelarc, 121
Stewart, Damian, 54
Stock, Susan, 223
Stollenmayer, Phillipp, 76
Studio Moniker, 32, 71, 85
Su, Peiqi, 47
Sugimoto, Tatsuo, 185–229
Sugrue, Christine, 54
Sunlight Foundation, 96
SuperCollider, 144
Surprenant, David, 91
Sutherland, Ivan, 50, 54
Szpakowski, Mark, 85

Takahashi, Keijiro, 141
Tale of Tales, 91
Tarbell, Jared, 38
Tardy, Romain, 71
TenthBit Inc, 91
Thapen, Neil, 107
Thayer, Pall, 80
The Yes Men, 96
Thompson, Jeff, 80
Thorp, Jer, 80, 192, 197, 205,

209, 218, 225, 250
Thricedotted, 80
Todo, 21
Tracery, 3, 80, 175
Tremmel, Georg, 101
Trochut, Joan, 59
Tseng, Francis, 42
Tseng, Yen-Wen, 32
Turkle, Sherry, 7
Tzara, Tristan, 173

Ulanovsky, Julieta, 59
Unity (game engine), 3
Universal Everything, 42, 141
Urbonas, Julijonas, 113
Utterback, Camille, 141

Valbuena, Pablo, 71, 245
Valla, Clement, 54
Van Balen, Tuur, 32
Van Gelder, Pia, 147
Vanetti, Sidi, 71, 245
Vaquié, Thomas, 71
Varner, Maddy, 91, 101, 113
Vasarely, Victor, 21
Vasiliev, Daniel (Danja),

96, 113
Vasudevan, Roopa, 85
Verstappen, Maria, 129
Viégas, Fernanda, 65
Vo, Lam Thuy, 65
Vojir, Lukas, 42, 242, 249
Voss, Richard F., 38

Wagenknecht, Addie, 53
Walter, William Grey, 42
Wang, Wen, 129
Warren, Jonah, 53
Watanabe, Brent, 42
Watson, Theo, 42, 141
Wattenberg, Martin, 242
Watz, Marius, 21, 242
Weinberg, Tali, 47
Weinkle, Ari, 141

Weizenbaum, Joseph, 107
Wekinator, 145, 147
Whitelaw, Mitchell, 5, 13, 42,

129, 236
Wiesner, Jerome B., 6
Wilk, Elvia, 6, 13
Willmott, Laurence, 32
Wilson, Mark, 240, 249
Wodiczko, Krzysztof, 71
Woebken, Chris, 121
Wolfram, Stephen, 65
Wolpert, Jesse, 121
Wood, Jeremy, 54
Wood, McKinnon, 147
Woodgate, Agustina, 32
Wright, Will, 42
Wu, Amy Suo, 101

Xenakis, Iannis, 54, 147
Xerox Palo Alto Research

Center (PARC), 5

Y&R New York, 136
Yablonina, Maria, 129
Yamaguchi, Takahiro, 53
Yao, Lining, 129
YesYesNo, 71, 141
Yoshihara, Jirō, 85

Zawada, Jonathan, 38
Zer-Aviv, Mushon, 96
Zhang, Jia, 80
Zhu, Jingwen, 91
Zimbardi, Flavia, 59
Zurkow, Marina, 229

Montfort, Nick, 159, 241,
242, 249

Montinar, Steven, 121
Monty Python, 104
Morse, Brandon, 42
Morzier, Eric, 32
MSCHF, 179
Mulder, Sander, 32
Müller, Alexander, 121
Munari, Bruno, 27, 32, 59,

240, 249
Muniz, Vik, 47
Munkowitz, Bradley G., 71
Museum of Modern Art, The

(MoMA) 136, 193, 245
Mustakos, Tatyana, 158
Mutiti, Nontsikelelo, 21, 91

Naimark, Michael, 6, 13,
71, 245

Nakamura, Yugo, 32
Napier, Mark, 85
Nasser, Ramsey, 74, 76, 80
Navarro, Adrià, 42
Nees, Georg, 154
Nervous System, 21, 129
Nexus Studio, 141
Nguyen, Dong, 76
Nimoy, JT, 53, 59, 147, 243
Nordmeyer, Sascha, 121

Obermaier, Klaus, 71, 141
Odell, Jenny, 44, 47, 136
Ohio State University, 244
Okada, Kenichi, 121
Okunseinde, Ayodamola,

85, 121
Oliver, Julian, 96, 101, 113,

136, 247
Ono, Yoko, 85, 150
Onuoha, Mimi, 3, 13, 110, 113
Opara, Anastasia, 38
openFrameworks, 3, 68, 182
Oram, Daphne, 53, 147
Orlan, 27, 141
Oxman, Neri, 129

p5.js, 3, 21, 65, 147, 163,
204, 223

Paine, Roxy, 124, 129
Papert, Seymour, 7, 13, 192
Parrish, Allison, 5, 78, 80,

147, 175, 189, 194, 200,
207, 218, 223, 229

276 Code as Creative Medium

Movement, motion, 40,
137–142, 158, 176–177, 183

Natural language
processing, 96, 98, 103–
108, 173, 174, 200, 207

Networks, 77–80, 81–85,
87–92, 93–96, 246

Noise, 36, 158–159, 176, 183

Parametric design, 24, 56,
123–130, 158, 212, 240,
244

Participation, 81–85
Particle system, 158, 172,

176–177, 181, 182
Pattern, 17–21, 152, 154, 159,

177, 239
Performance, 116, 138, 144,

200, 248
Physical computing, 110,

116, 182
Pixels, 43–47, 150, 170
Portraiture, 61–65, 152
Programming language, vii,

7, 11, 12, 47 147, 173–175,
187, 193, 194, 203, 204

Project-based learning, 6
Projection, 67–71, 245
Public art, 78, 110, 131–134
Public space, 121, 131–136

Randomness, 36, 40, 158,
159, 170

Recursion, 176, 276
Robotics, 40, 42, 53, 59, 85,

107, 116

Scale, 44, 68
Sculpture, 124–130, 131–136
Search, 160, 173, 170,

153, 207
Shape, 164–165, 162–163,

152, 159
Silicon Valley, 5
Simulation, 24, 36, 40, 176
Social justice, as a theme,

27, 91, 110, 113, 236
Social media, 5, 62, 77–80,

88, 239
Sorting, 160, 170, 173
Sound, 104, 138, 143–148,

151, 179, 180–181, 161,
213, 248

176–177, 213
Encoding, 97–101, 151. See

also Transcoding
Environmental art, 47, 71,

110, 113, 136
Excitement, 9, 187, 227

Fabrication, 18, 116, 123–130
Feminism, as a theme, 53,

85, 121, 136
Fluxus, 227

Games, 73–76, 132, 150, 183,
211, 245

Generativity, 9, 23–27,
35–38, 123–130, 164, 174,
175, 213, 242

Geolocation, 132, 171–172
Geometry, 168, 169, 210
Graphic design, 238, 244,

258–259, 17–21, 30,
55–59

Hacking, 5, 13, 116, 163, 204,
211, 229

Images, 170, 179
Installation, 68, 132
Interactivity, 9, 24, 44, 50,

74, 82, 88, 94, 104, 116,
138, 144, 153, 155, 157,
160, 161, 179, 245, 247

Interface, 50, 74, 82, 88, 94,
104, 144, 145

Internet art, 77–80, 81–85,
88, 93–96

Intervention (public), 67–71,
78, 94, 110, 131–146

Iteration, 17–21, 153, 159,
160, 170, 239

Labor, 44, 47, 53, 82
Landscape, 35–38
Language, 88, 200, 206,

222, 232, 238

Machine learning, 178, 179
Metadesign, designing

systems, 18, 36, 40, 50,
56, 82, 124, 223

Military technology, 124,
139, 198

Mobile media, 24, 36, 56,
124, 132

Collaboration, 9, 50, 81–85,
150, 194, 209, 228

Color, 18, 24, 44, 96, 145,
153, 155–156, 170, 171,
173, 199

Community building, 3, 4, 9,
193, 232

Computational art, history,
150, 154, 159, 212,
238–250

Computational literacy, 4,
187, 196

Computer science, 187
Computer science

pedagogy, 2–3, 188
Conditional design, 150
Conditional testing, 157
Connectivity, 10. See also

Networks
Constructivism, 7
Creative coding, 3, 4, 196,

228, 237–250
Critical design, 5, 94, 212
Critical engineering, 5, 113
Critique, 5, 6, 94, 110, 132,

196, 233–234
Crowdsourcing, 82
Curves, 152, 163–165, 168
Cybernetics, 21, 42, 122

Dada, 173, 207, 227
Dance, 137–139, 222–223
Data collection, sensing,

109–113, 116, 144, 247
Data visualization, 24, 30,

61–65, 124, 138, 167, 170,
171–172, 173, 175, 179,
205, 210, 245

Datasets, 155, 156, 170, 171–
172, 178, 179, 175, 173, 205

Debugging, 217, 226,
232–233

Defamiliarization, 7, 50,
94, 117

Détournement, 94, 96, 104
Diversity, inclusivity,8, 221,

232
Drawing, 24, 49–54, 150,

152, 158, 167, 188, 210,
211, 213, 243, 244

Electronics. See Physical
computing

Emergence, 40, 81–85, 150,

Abstraction, 2, 4, 17–21, 43,
124, 133, 139, 141, 161,
240, 241, 244

Activist art, 8, 80, 94, 98,
110, 132

Afrofuturism, 85, 120–121
Analog (without a

computer), 58, 150, 183
Animation, 24, 36, 74, 138,

139, 160, 161, 162, 163
API (application

programming interface),
78, 80, 94, 182, 211, 222,
228, 247

Architecture, 67–71
Artificial intelligence, 53, 82,

88, 91, 104–108, 227
Arts or cultural literacy, 6,

193, 194, 196–201
Assistive technology,

115–122, 199
Audiovisual, 143–148, 161,

181–182
Augmented reality, 68,

130–135
Automation, 53, 85, 103–

108, 178. See also Bot

Bauhaus movement, vii, 47
Beginners, 188–193,

201–205, 209–211,
224–229, 232–233

BioArt, 198, 212
Biometrics, 24, 116, 137–142,

178, 179
Blockchain, 101
Body, 40, 50, 53, 65, 68, 74,

88, 115–122, 125, 137–142,
144, 178, 201, 248

Bot, 75–78, 88, 91, 103–108.
See also Automation

Browser, 82, 93–96, 178,
211, 246

CAD, 101, 124, 129
Challenges or difficulties

when teaching, 216–218
Chance. See Randomness
Children’s media, 98
Circles, 155, 156, 161,

164–166, 169, 171, 183
Classroom, 8–9, 190,

231–236
Climate change, 136, 198

Subject Index

277Indexes

Speculative design, 5, 85,
117, 120, 128, 134, 141, 212

Surveillance, 62, 94, 98, 139
System design. See

Metadesign

Textiles, 18, 47
Time, 29–33, 161, 211
Tools, 49–54, 87–92, 93–96,

97–101, 109–112, 115–122,
204, 209, 243

Transcoding, 9, 182, 182, 181,
172. See also Encoding

Typography, 55–59,
162–163, 212, 244

Virtual reality, 38, 141
Virtuality, also corporeality,

10, 67–72, 115–122,
131–136, 136–142

Visualization. See Data
visualization

Voice, 52, 103–108, 182, 247

Wearables, 113–120, 138
Wi–Fi, 65, 96, 113, 136

O gracious reader, wash your hands and touch
the book only when you have coerced those
who represent you to dismantle the police and
decarbonize our societies, else there will be no
future for computational art and design, nor
life on Earth as we know it.

The attractive parts of this book were
designed by Kyuha (Q) Shim and Minsun Eo.
Any unattractive parts are wholly the result
of interference and questionable decisions
by Golan Levin and Tega Brain. The majority
of this book’s layout was computationally
generated using Basil.js.

The artworks on the front and back covers of
this book were generated in Processing by
Manolo Gamboa Naon and are excerpted from
Vitamina (2019) and Fils (2020), respectively.
The illustrations in the Exercises section were
designed using Processing and p5.js.

The book was set in Atlas Grotesk and Atlas
Typewriter, designed in 2012 by Susana
Carvalho, Kai Bernau, Christian Schwartz,
and Ilya Ruderman.

A repository of code for this book, including
sample solutions for Exercises, is located at:
https://github.com/CodeAsCreativeMedium.

	Contents
	Foreword
	Introduction
	Part One: Assignments
	Iterative Pattern
	Face Generator
	Clock
	Generative Landscape
	Virtual Creature
	Custom Pixel
	Drawing Machine
	Modular Alphabet
	Data Self-Portrait
	Augmented Projection
	One-Button Game
	Bot
	Collective Memory
	Experimental Chat
	Browser Extension
	Creative Cryptography
	Voice Machine
	Measuring Device
	Personal Prosthetic
	Parametric Object
	Virtual Public Sculpture
	Extrapolated Body
	Synesthetic Instrument

	Part Two: Exercises
	Computing without a Computer
	Graphic Elements
	Iteration
	Color
	Conditional Testing
	Unpredictability
	Arrays
	Time and Interactivity
	Typography
	Curves
	Shapes
	Geometry
	Image
	Visualization
	Text and Language
	Simulation
	Machine Learning
	Sound
	Games

	Part Three: Interviews
	Teaching Programming to Artists and Designers
	The Bimodal Classroom
	Encouraging a Point of View
	The First Day
	Favorite Assignment
	When Things Go Wrong
	Most Memorable Response
	Advice for New Educators

	Classroom Techniques
	Provenance
	Appendices
	Authors and Contributors
	Notes on Computational Book Design
	Acknowledgments

	Bibliographies
	Related Resources
	Illustration Credits

	Indexes
	Name Index
	Subject Index

